Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level

© 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 20 vom: 04. Mai, Seite e2100491
1. Verfasser: Luo, Sihai (VerfasserIn)
Weitere Verfasser: Mancini, Andrea, Berté, Rodrigo, Hoff, Bård H, Maier, Stefan A, de Mello, John C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article lithography metallic nanostructures molecular electronics nanofabrication, nanogaps
LEADER 01000caa a22002652 4500
001 NLM324922663
003 DE-627
005 20241013231816.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.202100491  |2 doi 
028 5 2 |a pubmed24n1566.xml 
035 |a (DE-627)NLM324922663 
035 |a (NLM)33939199 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Sihai  |e verfasserin  |4 aut 
245 1 0 |a Massively Parallel Arrays of Size-Controlled Metallic Nanogaps with Gap-Widths Down to the Sub-3-nm Level 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 13.10.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 The Authors. Advanced Materials published by Wiley-VCH GmbH. 
520 |a Metallic nanogaps (MNGs) are fundamental components of nanoscale photonic and electronic devices. However, the lack of reproducible, high-yield fabrication methods with nanometric control over the gap-size has hindered practical applications. A patterning technique based on molecular self-assembly and physical peeling is reported here that allows the gap-width to be tuned from more than 30 nm to less than 3 nm. The ability of the technique to define sub-3-nm gaps between dissimilar metals permits the easy fabrication of molecular rectifiers, in which conductive molecules bridge metals with differing work functions. A method is further described for fabricating massively parallel nanogap arrays containing hundreds of millions of ring-shaped nanogaps, in which nanometric size control is maintained over large patterning areas of up to a square centimeter. The arrays exhibit strong plasmonic resonances under visible light illumination and act as high-performance substrates for surface-enhanced Raman spectroscopy, with high enhancement factors of up to 3 × 108 relative to thin gold films. The methods described here extend the range of metallic nanostructures that can be fabricated over large areas, and are likely to find many applications in molecular electronics, plasmonics, and biosensing 
650 4 |a Journal Article 
650 4 |a lithography 
650 4 |a metallic nanostructures 
650 4 |a molecular electronics 
650 4 |a nanofabrication, nanogaps 
700 1 |a Mancini, Andrea  |e verfasserin  |4 aut 
700 1 |a Berté, Rodrigo  |e verfasserin  |4 aut 
700 1 |a Hoff, Bård H  |e verfasserin  |4 aut 
700 1 |a Maier, Stefan A  |e verfasserin  |4 aut 
700 1 |a de Mello, John C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 33(2021), 20 vom: 04. Mai, Seite e2100491  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:33  |g year:2021  |g number:20  |g day:04  |g month:05  |g pages:e2100491 
856 4 0 |u http://dx.doi.org/10.1002/adma.202100491  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 33  |j 2021  |e 20  |b 04  |c 05  |h e2100491