Shaping Magnetite by Hydroxyl Group Numbers of Small Molecules

Despite numerous reports on magnetite formation with the assistance of various additives, the role of hydroxyl group (-OH) numbers in small polyol molecules has not yet been understood well. We selected small molecules containing different -OH numbers, such as ethanol, ethylene glycol, propanetriol,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 18 vom: 11. Mai, Seite 5582-5590
1. Verfasser: Liu, Yu (VerfasserIn)
Weitere Verfasser: Gan, Ying, Zhao, Cong, Yang, Jingxuan, Zhu, Hongyu, Li, Yang, Shuai, Shirong, Hao, Jianyuan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:Despite numerous reports on magnetite formation with the assistance of various additives, the role of hydroxyl group (-OH) numbers in small polyol molecules has not yet been understood well. We selected small molecules containing different -OH numbers, such as ethanol, ethylene glycol, propanetriol, butanetetrol, pentitol, hexanehexol, and cyclohexanehexol, as additives in coprecipitation. By increasing the -OH number in these small polyol molecules, the formation of crystallization was slowed, and the size and shape of magnetite were regulated as well possibly due to the changed complexation strength and the stability of the precursor. The increase in temperature and the Fe2+/Fe3+ ratio can reduce the complexation strength. The nucleation and growth of magnetite proceed possibly through the aggregation of polyol-stabilized amorphous complexes and two-line ferrihydrite with low crystallinity based on the -OH numbers, suggesting a nonclassical pathway. The as-prepared magnetite showed a r2/r1 ratio after in vitro MRI measurement as follows: Fe3O4He-6OH rod < Fe3O4@Pr-3OH sheet < Fe3O4@Pe-5OH cube. The Fe3O4@He-6OH rod and Fe3O4@Pr-3OH sheet displayed T1-T2 dual modal contrast ability, while the Fe3O4@Pe-5OH cube can be T2-dominated. This research provides a simple but an essential approach for designing MRI contrast agents
Beschreibung:Date Completed 24.05.2021
Date Revised 24.05.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c00424