DerainCycleGAN : Rain Attentive CycleGAN for Single Image Deraining and Rainmaking

Single Image Deraining (SID) is a relatively new and still challenging topic in emerging vision applications, and most of the recently emerged deraining methods use the supervised manner depending on the ground-truth (i.e., using paired data). However, in practice it is rather common to encounter un...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 4788-4801
1. Verfasser: Wei, Yanyan (VerfasserIn)
Weitere Verfasser: Zhang, Zhao, Wang, Yang, Xu, Mingliang, Yang, Yi, Yan, Shuicheng, Wang, Meng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM324831110
003 DE-627
005 20231225191140.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3074804  |2 doi 
028 5 2 |a pubmed24n1082.xml 
035 |a (DE-627)NLM324831110 
035 |a (NLM)33929960 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Yanyan  |e verfasserin  |4 aut 
245 1 0 |a DerainCycleGAN  |b Rain Attentive CycleGAN for Single Image Deraining and Rainmaking 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Single Image Deraining (SID) is a relatively new and still challenging topic in emerging vision applications, and most of the recently emerged deraining methods use the supervised manner depending on the ground-truth (i.e., using paired data). However, in practice it is rather common to encounter unpaired images in real deraining task. In such cases, how to remove the rain streaks in an unsupervised way will be a challenging task due to lack of constraints between images and hence suffering from low-quality restoration results. In this paper, we therefore explore the unsupervised SID issue using unpaired data, and propose a new unsupervised framework termed DerainCycleGAN for single image rain removal and generation, which can fully utilize the constrained transfer learning ability and circulatory structures of CycleGAN. In addition, we design an unsupervised rain attentive detector (UARD) for enhancing the rain information detection by paying attention to both rainy and rain-free images. Besides, we also contribute a new synthetic way of generating the rain streak information, which is different from the previous ones. Specifically, since the generated rain streaks have diverse shapes and directions, existing derianing methods trained on the generated rainy image by this way can perform much better for processing real rainy images. Extensive experimental results on synthetic and real datasets show that our DerainCycleGAN is superior to current unsupervised and semi-supervised methods, and is also highly competitive to the fully-supervised ones 
650 4 |a Journal Article 
700 1 |a Zhang, Zhao  |e verfasserin  |4 aut 
700 1 |a Wang, Yang  |e verfasserin  |4 aut 
700 1 |a Xu, Mingliang  |e verfasserin  |4 aut 
700 1 |a Yang, Yi  |e verfasserin  |4 aut 
700 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 4788-4801  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:4788-4801 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3074804  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 4788-4801