Salient Object Detection Based on Visual Perceptual Saturation and Two-Stream Hybrid Networks

Inspired by the perceived saturation of human visual system, this paper proposes a two-stream hybrid networks to simulate binocular vision for salient object detection (SOD). Each stream in our system consists of unsupervised and supervised methods to form a two-branch module, so as to model the int...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 01., Seite 4773-4787
1. Verfasser: Pan, Chen (VerfasserIn)
Weitere Verfasser: Liu, Jianfeng, Yan, Wei Qi, Cao, Feilong, He, Wei, Zhou, Yongxia
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM324831080
003 DE-627
005 20231225191140.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3074796  |2 doi 
028 5 2 |a pubmed24n1082.xml 
035 |a (DE-627)NLM324831080 
035 |a (NLM)33929959 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pan, Chen  |e verfasserin  |4 aut 
245 1 0 |a Salient Object Detection Based on Visual Perceptual Saturation and Two-Stream Hybrid Networks 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 12.05.2021 
500 |a Date Revised 12.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Inspired by the perceived saturation of human visual system, this paper proposes a two-stream hybrid networks to simulate binocular vision for salient object detection (SOD). Each stream in our system consists of unsupervised and supervised methods to form a two-branch module, so as to model the interaction between human intuition and memory. The two-branch module parallel processes visual information with bottom-up and top-down SODs, and output two initial saliency maps. Then a polyharmonic neural network with random-weight (PNNRW) is utilized to fuse two-branch's perception and refine the salient objects by learning online via multi-source cues. Depend on visual perceptual saturation, we can select optimal parameter of superpixel for unsupervised branch, locate sampling regions for PNNRW, and construct a positive feedback loop to facilitate perception saturated after the perception fusion. By comparing the binary outputs of the two-stream, the pixel annotation of predicted object with high saturation degree could be taken as new training samples. The presented method constitutes a semi-supervised learning framework actually. Supervised branches only need to be pre-trained initial, the system can collect the training samples with high confidence level and then train new models by itself. Extensive experiments show that the new framework can improve performance of the existing SOD methods, that exceeds the state-of-the-art methods in six popular benchmarks 
650 4 |a Journal Article 
700 1 |a Liu, Jianfeng  |e verfasserin  |4 aut 
700 1 |a Yan, Wei Qi  |e verfasserin  |4 aut 
700 1 |a Cao, Feilong  |e verfasserin  |4 aut 
700 1 |a He, Wei  |e verfasserin  |4 aut 
700 1 |a Zhou, Yongxia  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 01., Seite 4773-4787  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:01  |g pages:4773-4787 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3074796  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 01  |h 4773-4787