Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales

© 2021 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 15 vom: 01. Aug., Seite 3582-3604
1. Verfasser: Knox, Sara H (VerfasserIn)
Weitere Verfasser: Bansal, Sheel, McNicol, Gavin, Schafer, Karina, Sturtevant, Cove, Ueyama, Masahito, Valach, Alex C, Baldocchi, Dennis, Delwiche, Kyle, Desai, Ankur R, Euskirchen, Eugenie, Liu, Jinxun, Lohila, Annalea, Malhotra, Avni, Melling, Lulie, Riley, William, Runkle, Benjamin R K, Turner, Jessica, Vargas, Rodrigo, Zhu, Qing, Alto, Tuula, Fluet-Chouinard, Etienne, Goeckede, Mathias, Melton, Joe R, Sonnentag, Oliver, Vesala, Timo, Ward, Eric, Zhang, Zhen, Feron, Sarah, Ouyang, Zutao, Alekseychik, Pavel, Aurela, Mika, Bohrer, Gil, Campbell, David I, Chen, Jiquan, Chu, Housen, Dalmagro, Higo J, Goodrich, Jordan P, Gottschalk, Pia, Hirano, Takashi, Iwata, Hiroki, Jurasinski, Gerald, Kang, Minseok, Koebsch, Franziska, Mammarella, Ivan, Nilsson, Mats B, Ono, Keisuke, Peichl, Matthias, Peltola, Olli, Ryu, Youngryel, Sachs, Torsten, Sakabe, Ayaka, Sparks, Jed P, Tuittila, Eeva-Stiina, Vourlitis, George L, Wong, Guan X, Windham-Myers, Lisamarie, Poulter, Benjamin, Jackson, Robert B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article eddy covariance generalized additive modeling lags methane mutual information predictors random forest synthesis time scales mehr... wetlands Carbon Dioxide 142M471B3J Methane OP0UW79H66
LEADER 01000naa a22002652 4500
001 NLM324682387
003 DE-627
005 20231225190833.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15661  |2 doi 
028 5 2 |a pubmed24n1082.xml 
035 |a (DE-627)NLM324682387 
035 |a (NLM)33914985 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Knox, Sara H  |e verfasserin  |4 aut 
245 1 0 |a Identifying dominant environmental predictors of freshwater wetland methane fluxes across diurnal to seasonal time scales 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.08.2021 
500 |a Date Revised 06.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 John Wiley & Sons Ltd. 
520 |a While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions 
650 4 |a Journal Article 
650 4 |a eddy covariance 
650 4 |a generalized additive modeling 
650 4 |a lags 
650 4 |a methane 
650 4 |a mutual information 
650 4 |a predictors 
650 4 |a random forest 
650 4 |a synthesis 
650 4 |a time scales 
650 4 |a wetlands 
650 7 |a Carbon Dioxide  |2 NLM 
650 7 |a 142M471B3J  |2 NLM 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
700 1 |a Bansal, Sheel  |e verfasserin  |4 aut 
700 1 |a McNicol, Gavin  |e verfasserin  |4 aut 
700 1 |a Schafer, Karina  |e verfasserin  |4 aut 
700 1 |a Sturtevant, Cove  |e verfasserin  |4 aut 
700 1 |a Ueyama, Masahito  |e verfasserin  |4 aut 
700 1 |a Valach, Alex C  |e verfasserin  |4 aut 
700 1 |a Baldocchi, Dennis  |e verfasserin  |4 aut 
700 1 |a Delwiche, Kyle  |e verfasserin  |4 aut 
700 1 |a Desai, Ankur R  |e verfasserin  |4 aut 
700 1 |a Euskirchen, Eugenie  |e verfasserin  |4 aut 
700 1 |a Liu, Jinxun  |e verfasserin  |4 aut 
700 1 |a Lohila, Annalea  |e verfasserin  |4 aut 
700 1 |a Malhotra, Avni  |e verfasserin  |4 aut 
700 1 |a Melling, Lulie  |e verfasserin  |4 aut 
700 1 |a Riley, William  |e verfasserin  |4 aut 
700 1 |a Runkle, Benjamin R K  |e verfasserin  |4 aut 
700 1 |a Turner, Jessica  |e verfasserin  |4 aut 
700 1 |a Vargas, Rodrigo  |e verfasserin  |4 aut 
700 1 |a Zhu, Qing  |e verfasserin  |4 aut 
700 1 |a Alto, Tuula  |e verfasserin  |4 aut 
700 1 |a Fluet-Chouinard, Etienne  |e verfasserin  |4 aut 
700 1 |a Goeckede, Mathias  |e verfasserin  |4 aut 
700 1 |a Melton, Joe R  |e verfasserin  |4 aut 
700 1 |a Sonnentag, Oliver  |e verfasserin  |4 aut 
700 1 |a Vesala, Timo  |e verfasserin  |4 aut 
700 1 |a Ward, Eric  |e verfasserin  |4 aut 
700 1 |a Zhang, Zhen  |e verfasserin  |4 aut 
700 1 |a Feron, Sarah  |e verfasserin  |4 aut 
700 1 |a Ouyang, Zutao  |e verfasserin  |4 aut 
700 1 |a Alekseychik, Pavel  |e verfasserin  |4 aut 
700 1 |a Aurela, Mika  |e verfasserin  |4 aut 
700 1 |a Bohrer, Gil  |e verfasserin  |4 aut 
700 1 |a Campbell, David I  |e verfasserin  |4 aut 
700 1 |a Chen, Jiquan  |e verfasserin  |4 aut 
700 1 |a Chu, Housen  |e verfasserin  |4 aut 
700 1 |a Dalmagro, Higo J  |e verfasserin  |4 aut 
700 1 |a Goodrich, Jordan P  |e verfasserin  |4 aut 
700 1 |a Gottschalk, Pia  |e verfasserin  |4 aut 
700 1 |a Hirano, Takashi  |e verfasserin  |4 aut 
700 1 |a Iwata, Hiroki  |e verfasserin  |4 aut 
700 1 |a Jurasinski, Gerald  |e verfasserin  |4 aut 
700 1 |a Kang, Minseok  |e verfasserin  |4 aut 
700 1 |a Koebsch, Franziska  |e verfasserin  |4 aut 
700 1 |a Mammarella, Ivan  |e verfasserin  |4 aut 
700 1 |a Nilsson, Mats B  |e verfasserin  |4 aut 
700 1 |a Ono, Keisuke  |e verfasserin  |4 aut 
700 1 |a Peichl, Matthias  |e verfasserin  |4 aut 
700 1 |a Peltola, Olli  |e verfasserin  |4 aut 
700 1 |a Ryu, Youngryel  |e verfasserin  |4 aut 
700 1 |a Sachs, Torsten  |e verfasserin  |4 aut 
700 1 |a Sakabe, Ayaka  |e verfasserin  |4 aut 
700 1 |a Sparks, Jed P  |e verfasserin  |4 aut 
700 1 |a Tuittila, Eeva-Stiina  |e verfasserin  |4 aut 
700 1 |a Vourlitis, George L  |e verfasserin  |4 aut 
700 1 |a Wong, Guan X  |e verfasserin  |4 aut 
700 1 |a Windham-Myers, Lisamarie  |e verfasserin  |4 aut 
700 1 |a Poulter, Benjamin  |e verfasserin  |4 aut 
700 1 |a Jackson, Robert B  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 15 vom: 01. Aug., Seite 3582-3604  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:15  |g day:01  |g month:08  |g pages:3582-3604 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15661  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 15  |b 01  |c 08  |h 3582-3604