Efficient Semantic Image Synthesis via Class-Adaptive Normalization

Spatially-adaptive normalization (SPADE) is remarkably successful recently in conditional semantic image synthesis in T. Park et al. 2019 which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being was...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 29. Sept., Seite 4852-4866
Auteur principal: Tan, Zhentao (Auteur)
Autres auteurs: Chen, Dongdong, Chu, Qi, Chai, Menglei, Liao, Jing, He, Mingming, Yuan, Lu, Hua, Gang, Yu, Nenghai
Format: Article en ligne
Langue:English
Publié: 2022
Accès à la collection:IEEE transactions on pattern analysis and machine intelligence
Sujets:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652c 4500
001 NLM324679327
003 DE-627
005 20250301131715.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3076487  |2 doi 
028 5 2 |a pubmed25n1082.xml 
035 |a (DE-627)NLM324679327 
035 |a (NLM)33914680 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tan, Zhentao  |e verfasserin  |4 aut 
245 1 0 |a Efficient Semantic Image Synthesis via Class-Adaptive Normalization 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2022 
500 |a Date Revised 14.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Spatially-adaptive normalization (SPADE) is remarkably successful recently in conditional semantic image synthesis in T. Park et al. 2019 which modulates the normalized activation with spatially-varying transformations learned from semantic layouts, to prevent the semantic information from being washed away. Despite its impressive performance, a more thorough understanding of the advantages inside the box is still highly demanded to help reduce the significant computation and parameter overhead introduced by this novel structure. In this paper, from a return-on-investment point of view, we conduct an in-depth analysis of the effectiveness of this spatially-adaptive normalization and observe that its modulation parameters benefit more from semantic-awareness rather than spatial-adaptiveness, especially for high-resolution input masks. Inspired by this observation, we propose class-adaptive normalization (CLADE), a lightweight but equally-effective variant that is only adaptive to semantic class. In order to further improve spatial-adaptiveness, we introduce intra-class positional map encoding calculated from semantic layouts to modulate the normalization parameters of CLADE and propose a truly spatially-adaptive variant of CLADE, namely CLADE-ICPE. Through extensive experiments on multiple challenging datasets, we demonstrate that the proposed CLADE can be generalized to different SPADE-based methods while achieving comparable generation quality compared to SPADE, but it is much more efficient with fewer extra parameters and lower computational cost. The code and pretrained models are available at https://github.com/tzt101/CLADE.git 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Chen, Dongdong  |e verfasserin  |4 aut 
700 1 |a Chu, Qi  |e verfasserin  |4 aut 
700 1 |a Chai, Menglei  |e verfasserin  |4 aut 
700 1 |a Liao, Jing  |e verfasserin  |4 aut 
700 1 |a He, Mingming  |e verfasserin  |4 aut 
700 1 |a Yuan, Lu  |e verfasserin  |4 aut 
700 1 |a Hua, Gang  |e verfasserin  |4 aut 
700 1 |a Yu, Nenghai  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 29. Sept., Seite 4852-4866  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:29  |g month:09  |g pages:4852-4866 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3076487  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 29  |c 09  |h 4852-4866