|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM324676271 |
003 |
DE-627 |
005 |
20231225190826.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202101038
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1082.xml
|
035 |
|
|
|a (DE-627)NLM324676271
|
035 |
|
|
|a (NLM)33914371
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Xie, Xiaoying
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a MIL-101-Derived Mesoporous Carbon Supporting Highly Exposed Fe Single-Atom Sites as Efficient Oxygen Reduction Reaction Catalysts
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 09.06.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Fe single-atom catalysts (Fe SACs) with atomic FeNx active sites are very promising alternatives to platinum-based catalysts for the oxygen reduction reaction (ORR). The pyrolysis of metal-organic frameworks (MOFs) is a common approach for preparing Fe SACs, though most MOF-derived catalysts reported to date are microporous and thus suffer from poor mass transfer and a high proportion of catalytically inaccessible FeNx active sites. Herein, NH2 -MIL-101(Al), a MOF possessing a mesoporous cage architecture, is used as the precursor to prepare a series of N-doped carbon supports (denoted herein as NC-MIL101-T) with a well-defined mesoporous structure at different pyrolysis temperatures. The NC-MIL101-T supports are then impregnated with a Fe(II)-phenanthroline complex, and heated again to yield Fe SAC-MIL101-T catalysts rich in accessible FeNx single atom sites. The best performing Fe SAC-MIL101-1000 catalyst offers outstanding ORR activity in alkaline media, evidenced by an ORR half-wave potential of 0.94 V (vs RHE) in 0.1 m KOH, as well as excellent performance in both aqueous primary zinc-air batteries (a near maximum theoretical energy density of 984.2 Wh kgZn -1 ) and solid-state zinc-air batteries (a peak power density of 50.6 mW cm-2 and a specific capacity of 724.0 mAh kgZn -1 )
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Fe single-atom catalysts
|
650 |
|
4 |
|a MIL-101
|
650 |
|
4 |
|a mesoporous carbon
|
650 |
|
4 |
|a oxygen reduction reaction
|
650 |
|
4 |
|a zinc-air batteries
|
700 |
1 |
|
|a Peng, Lishan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Hongzhou
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Waterhouse, Geoffrey I N
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shang, Lu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Tierui
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 23 vom: 16. Juni, Seite e2101038
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:23
|g day:16
|g month:06
|g pages:e2101038
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202101038
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 23
|b 16
|c 06
|h e2101038
|