Enhanced biomethane production by co-digestion of mixed sewage sludge and dephenolised two-phase olive pomace

In this study, co-digestion of mixed sewage sludge from a wastewater treatment plant (WWTP) and partially dephenolised two-phase olive pomace (DOP) as a co-substrate was addressed with the aim of improving the biodigestibility of both substrates. The introduction of DOP into WWTP anaerobic digester...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA. - 1991. - 40(2022), 5 vom: 31. Mai, Seite 565-574
1. Verfasser: Fragoso, Rita (VerfasserIn)
Weitere Verfasser: Henriques, Ana Catarina, Ochando-Pulido, Javier, Smozinski, Nicole, Duarte, Elizabeth
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
Schlagworte:Journal Article Anaerobic co-digestion biowaste management dephenolised olive pomace phenols sewage sludge Biofuels Sewage Methane OP0UW79H66
Beschreibung
Zusammenfassung:In this study, co-digestion of mixed sewage sludge from a wastewater treatment plant (WWTP) and partially dephenolised two-phase olive pomace (DOP) as a co-substrate was addressed with the aim of improving the biodigestibility of both substrates. The introduction of DOP into WWTP anaerobic digester facilities could significantly increase biomethane production and enhance the sustainability of both activities. An improvement in the system's performance was supported by stability parameters: total alkalinity increased and stabilised with the addition of 5% v/v DOP, and the specific energy loading rate was maintained at 0.177 ± 0.03 d-1, which indicated better buffer capacity and stability in the bioreactor, and the possibility of enhancing the organic loading rate. In terms of average daily biogas production rate, an increase of 39% was achieved, up to 0.39 ± 0.11 L L-1d-1. Moreover, there was a 40% and 37% improvement in specific methane production and methane production rate, respectively, up to 0.28 ± 0.02 L CH4 g TVS-1 and 0.26 ± 0.08 L L-1d-1. In addition, the proposed strategy leads to an energy saving of 20,328.6 kWh year-1 at the WWTP as a result of the electric energy production surplus, corresponding to an annual saving of €3293.23
Beschreibung:Date Completed 20.04.2022
Date Revised 20.04.2022
published: Print-Electronic
Citation Status MEDLINE
ISSN:1096-3669
DOI:10.1177/0734242X211003979