Pay Attention to Evolution : Time Series Forecasting with Deep Graph-Evolution Learning

Time-series forecasting is one of the most active research topics in artificial intelligence. A still open gap in that literature is that statistical and ensemble learning approaches systematically present lower predictive performance than deep learning methods. They generally disregard the data seq...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2021) vom: 27. Apr.
1. Verfasser: Spadon, Gabriel (VerfasserIn)
Weitere Verfasser: Hong, Shenda, Brandoli, Bruno, Matwin, Stan, Rodrigues-Jr, Jose Fernando, Sun, Jimeng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM324587392
003 DE-627
005 20240229143339.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3076155  |2 doi 
028 5 2 |a pubmed24n1303.xml 
035 |a (DE-627)NLM324587392 
035 |a (NLM)33905327 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Spadon, Gabriel  |e verfasserin  |4 aut 
245 1 0 |a Pay Attention to Evolution  |b Time Series Forecasting with Deep Graph-Evolution Learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Time-series forecasting is one of the most active research topics in artificial intelligence. A still open gap in that literature is that statistical and ensemble learning approaches systematically present lower predictive performance than deep learning methods. They generally disregard the data sequence aspect entangled with multivariate data represented in more than one time series. Conversely, this work presents a novel neural network architecture for time-series forecasting that combines the power of graph evolution with deep recurrent learning on distinct data distributions; we named our method Recurrent Graph Evolution Neural Network (ReGENN). The idea is to infer multiple multivariate relationships between co-occurring time-series by assuming that the temporal data depends not only on inner variables and intra-temporal relationships (i.e., observations from itself) but also on outer variables and inter-temporal relationships (i.e., observations from other-selves). An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones, showing sound improvement of up to 64.87% over the competing algorithms. Furthermore, we present an analysis of the intermediate weights arising from ReGENN, showing that by looking at inter and intra-temporal relationships simultaneously, time-series forecasting is majorly improved if paying attention to how multiple multivariate data synchronously evolve 
650 4 |a Journal Article 
700 1 |a Hong, Shenda  |e verfasserin  |4 aut 
700 1 |a Brandoli, Bruno  |e verfasserin  |4 aut 
700 1 |a Matwin, Stan  |e verfasserin  |4 aut 
700 1 |a Rodrigues-Jr, Jose Fernando  |e verfasserin  |4 aut 
700 1 |a Sun, Jimeng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2021) vom: 27. Apr.  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2021  |g day:27  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3076155  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2021  |b 27  |c 04