Physiological and molecular insights involved in silicon uptake and transport in ryegrass

Copyright © 2021 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 163(2021) vom: 01. Juni, Seite 308-316
1. Verfasser: Pontigo, Sofía (VerfasserIn)
Weitere Verfasser: Larama, Giovanni, Parra-Almuna, Leyla, Nunes-Nesi, Adriano, Mora, María de la Luz, Cartes, Paula
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Gene expression Kinetics Lolium perenne L Lsi1 Silicon uptake Plant Proteins Silicon Z4152N8IUI
Beschreibung
Zusammenfassung:Copyright © 2021 Elsevier Masson SAS. All rights reserved.
The silicon (Si) uptake system of two ryegrass (Lolium perenne L.) cultivars was characterised by assessing the concentration- and time-dependent kinetics. Additionally, a Si transporter gene was isolated from ryegrass and their expression pattern was analysed. The concentration-dependent kinetics was examined in Jumbo and Nui cultivars supplied with 0, 0.5, 1.0, 2.0, and 4.0 mM Si and harvested at 24 h and 21 d. The time-dependent kinetics was evaluated at 0, 0.5, or 2 mM Si doses after 0, 3, 6, 9, 12, and 24 h. RACE-PCR was performed to isolate a full-length sequence codifying for a Si transporter, and semi-quantitative and quantitative RT-PCR was used to analyse its expression pattern. Differential Si uptake between ryegrass cultivars was found. Moreover, Lineweaver-Burk linearization showed similar Vmax values between cultivars; however, different Km suggested that Jumbo and Nui may have different affinities for silicic acid. The dissimilarities in Km between cultivars might involve either the differential contribution of known proteins responsible for Si uptake and transport or the involvement of undiscovered Si transporters. We identified a putative Si transporter from ryegrass Nui (LpLsi1), which was only expressed in roots and down-regulated by Si supply. The predicted amino acid sequence of LpLsi1 did not only show a high similarity and close phylogenetic relationship with monocot Si influx transporters but also indicated that it is a membrane protein possessing a high conservation of domains essential for silicic acid selectivity. Our findings provide evidence of LpLsi1 in ryegrass, which supports its high Si accumulation capacity
Beschreibung:Date Completed 12.05.2021
Date Revised 12.05.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2021.04.013