Explicit Facial Expression Transfer via Fine-Grained Representations

Facial expression transfer between two unpaired images is a challenging problem, as fine-grained expression is typically tangled with other facial attributes. Most existing methods treat expression transfer as an application of expression manipulation, and use predicted global expression, landmarks...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 29., Seite 4610-4621
1. Verfasser: Shao, Zhiwen (VerfasserIn)
Weitere Verfasser: Zhu, Hengliang, Tang, Junshu, Lu, Xuequan, Ma, Lizhuang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM324405219
003 DE-627
005 20250301121207.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3073857  |2 doi 
028 5 2 |a pubmed25n1081.xml 
035 |a (DE-627)NLM324405219 
035 |a (NLM)33886470 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shao, Zhiwen  |e verfasserin  |4 aut 
245 1 0 |a Explicit Facial Expression Transfer via Fine-Grained Representations 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.05.2021 
500 |a Date Revised 03.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Facial expression transfer between two unpaired images is a challenging problem, as fine-grained expression is typically tangled with other facial attributes. Most existing methods treat expression transfer as an application of expression manipulation, and use predicted global expression, landmarks or action units (AUs) as a guidance. However, the prediction may be inaccurate, which limits the performance of transferring fine-grained expression. Instead of using an intermediate estimated guidance, we propose to explicitly transfer facial expression by directly mapping two unpaired input images to two synthesized images with swapped expressions. Specifically, considering AUs semantically describe fine-grained expression details, we propose a novel multi-class adversarial training method to disentangle input images into two types of fine-grained representations: AU-related feature and AU-free feature. Then, we can synthesize new images with preserved identities and swapped expressions by combining AU-free features with swapped AU-related features. Moreover, to obtain reliable expression transfer results of the unpaired input, we introduce a swap consistency loss to make the synthesized images and self-reconstructed images indistinguishable. Extensive experiments show that our approach outperforms the state-of-the-art expression manipulation methods for transferring fine-grained expressions while preserving other attributes including identity and pose 
650 4 |a Journal Article 
700 1 |a Zhu, Hengliang  |e verfasserin  |4 aut 
700 1 |a Tang, Junshu  |e verfasserin  |4 aut 
700 1 |a Lu, Xuequan  |e verfasserin  |4 aut 
700 1 |a Ma, Lizhuang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 29., Seite 4610-4621  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:29  |g pages:4610-4621 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3073857  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 29  |h 4610-4621