Towards Perceptually Optimized Adaptive Video Streaming-A Realistic Quality of Experience Database

Measuring Quality of Experience (QoE) and integrating these measurements into video streaming algorithms is a multi-faceted problem that fundamentally requires the design of comprehensive subjective QoE databases and objective QoE prediction models. To achieve this goal, we have recently designed th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 20., Seite 5182-5197
1. Verfasser: Bampis, Christos G (VerfasserIn)
Weitere Verfasser: Li, Zhi, Katsavounidis, Ioannis, Huang, Te-Yuan, Ekanadham, Chaitanya, Bovik, Alan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM324323867
003 DE-627
005 20231225190058.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3073294  |2 doi 
028 5 2 |a pubmed24n1081.xml 
035 |a (DE-627)NLM324323867 
035 |a (NLM)33877974 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bampis, Christos G  |e verfasserin  |4 aut 
245 1 0 |a Towards Perceptually Optimized Adaptive Video Streaming-A Realistic Quality of Experience Database 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2021 
500 |a Date Revised 27.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Measuring Quality of Experience (QoE) and integrating these measurements into video streaming algorithms is a multi-faceted problem that fundamentally requires the design of comprehensive subjective QoE databases and objective QoE prediction models. To achieve this goal, we have recently designed the LIVE-NFLX-II database, a highly-realistic database which contains subjective QoE responses to various design dimensions, such as bitrate adaptation algorithms, network conditions and video content. Our database builds on recent advancements in content-adaptive encoding and incorporates actual network traces to capture realistic network variations on the client device. The new database focuses on low bandwidth conditions which are more challenging for bitrate adaptation algorithms, which often must navigate tradeoffs between rebuffering and video quality. Using our database, we study the effects of multiple streaming dimensions on user experience and evaluate video quality and quality of experience models and analyze their strengths and weaknesses. We believe that the tools introduced here will help inspire further progress on the development of perceptually-optimized client adaptation and video streaming strategies. The database is publicly available at http://live.ece.utexas.edu/research/LIVE_NFLX_II/live_nflx_plus.html 
650 4 |a Journal Article 
700 1 |a Li, Zhi  |e verfasserin  |4 aut 
700 1 |a Katsavounidis, Ioannis  |e verfasserin  |4 aut 
700 1 |a Huang, Te-Yuan  |e verfasserin  |4 aut 
700 1 |a Ekanadham, Chaitanya  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 20., Seite 5182-5197  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:20  |g pages:5182-5197 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3073294  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 20  |h 5182-5197