Integrating dairy manure for enhanced resource recovery at a WRRF : Environmental life cycle and pilot-scale analyses

© 2021 Water Environment Federation.

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 93(2021), 10 vom: 02. Okt., Seite 2034-2050
1. Verfasser: Bryant, Casey (VerfasserIn)
Weitere Verfasser: Coats, Erik R
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article life cycle assessment modeling resource recovery wastewater treatment Manure
LEADER 01000naa a22002652 4500
001 NLM324321643
003 DE-627
005 20231225190055.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/wer.1574  |2 doi 
028 5 2 |a pubmed24n1081.xml 
035 |a (DE-627)NLM324321643 
035 |a (NLM)33877720 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Bryant, Casey  |e verfasserin  |4 aut 
245 1 0 |a Integrating dairy manure for enhanced resource recovery at a WRRF  |b Environmental life cycle and pilot-scale analyses 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.10.2021 
500 |a Date Revised 19.10.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 Water Environment Federation. 
520 |a The Twin Falls, Idaho wastewater treatment plant (WWTP), currently operates solely to achieve regulatory permit compliance. Research was conducted to evaluate conversion of the WWTP to a water resource recovery facility (WRRF) and to assess the WRRF environmental sustainability; process configurations were evaluated to produce five resources-reclaimed water, biosolids, struvite, biogas, and bioplastics (polyhydroxyalkanoates, PHA). PHA production occurred using fermented dairy manure. State-of-the-art biokinetic modeling, performed using Dynamita's SUMO process model, was coupled with environmental life cycle assessment to quantify environmental sustainability. Results indicate that electricity production via combined heat and power (CHP) was most important in achieving environmental sustainability; energy offset ranged from 43% to 60%, thereby reducing demand for external fossil fuel-based energy. While struvite production helps maintain a resilient enhanced biological phosphorus removal (EBPR) process, MgO2 production exhibits negative environmental impacts; integration with CHP negates the adverse consequences. Integrating dairy manure to produce bioplastics diversifies the resource recovery portfolio while maintaining WRRF environmental sustainability; pilot-scale evaluations demonstrated that WRRF effluent quality was not affected by the addition of effluent from PHA production. Collectively, results show that a WRRF integrating dairy manure can yield a diverse portfolio of products while operating in an environmentally sustainable manner. PRACTITIONER POINTS: Wastewater carbon recovery via anaerobic digestion with combined heat/power production significantly reduces water resource recovery facility (WRRF) environmental emissions. Wastewater phosphorus recovery is of value; however, struvite production exhibits negative environmental impacts due to MgO2 production emissions. Bioplastics production on imported organic-rich agri-food waste can diversify the WRRF portfolio. Dairy manure can be successfully integrated into a WRRF for bioplastics production without compromising WRRF performance. Diversifying the WRRF products portfolio is a strategy to maximize resource recovery from wastewater while concurrently achieving environmental sustainability 
650 4 |a Journal Article 
650 4 |a life cycle assessment 
650 4 |a modeling 
650 4 |a resource recovery 
650 4 |a wastewater treatment 
650 7 |a Manure  |2 NLM 
700 1 |a Coats, Erik R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 93(2021), 10 vom: 02. Okt., Seite 2034-2050  |w (DE-627)NLM098214292  |x 1554-7531  |7 nnns 
773 1 8 |g volume:93  |g year:2021  |g number:10  |g day:02  |g month:10  |g pages:2034-2050 
856 4 0 |u http://dx.doi.org/10.1002/wer.1574  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 93  |j 2021  |e 10  |b 02  |c 10  |h 2034-2050