Control of flowering and reproduction in temperate grasses

Temperate grasses of the subfamily Festucioideae can be grouped into two main categories according to their environmental control of flowering, species with regular long day (LD) induction, and those with dual induction requirements. The former group includes the temperate annual crosses and a few p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 128(1994), 2 vom: 20. Okt., Seite 347-362
1. Verfasser: Heide, O M (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1994
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Dual floral induction flowering control inflorescence proliferation photoperiod reproduction temperate grasses temperature vivipary
LEADER 01000naa a22002652 4500
001 NLM324289553
003 DE-627
005 20231225190009.0
007 cr uuu---uuuuu
008 231225s1994 xx |||||o 00| ||eng c
024 7 |a 10.1111/j.1469-8137.1994.tb04019.x  |2 doi 
028 5 2 |a pubmed24n1080.xml 
035 |a (DE-627)NLM324289553 
035 |a (NLM)33874362 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Heide, O M  |e verfasserin  |4 aut 
245 1 0 |a Control of flowering and reproduction in temperate grasses 
264 1 |c 1994 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 20.04.2021 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Temperate grasses of the subfamily Festucioideae can be grouped into two main categories according to their environmental control of flowering, species with regular long day (LD) induction, and those with dual induction requirements. The former group includes the temperate annual crosses and a few perennial species such as Phleum pratense and Poa nemoralis. These species base no winter requirement and require only LD to flower. Most temperature perennial grasses have a dual induction requirement for flowering, a primary induction which is brought about by low temperature (vernalization) and/or short days (SD), and a secondary induction which requires a transition to long days and is enhanced by moderately high temperatures. In most dual induction species SD and low temperature are interchangeable and independently able to fulfil the primary induction requirement. Yet, they are highly interactive in this process. Commonly the plants become day neutral at low temperature (0-6 °C) and primary induction takes place in both SD and LD. Primary induction is then identical with the common vernalization response. At higher temperatures induction becomes increasingly dependent on SD. until a critical temperature is reached, usually c. 12-18 °C, at which primary induction cannot take place regardless of the photoperiod. In a few species, e.g, Bromus inermts, Phalaris arundinacea and to some extent Dactylis glomeratca, the SD response predominates while low temperature induction is weak or absent. Critical temperatures and photoperiods for primary induction vary greatly among species and, within the species, among ecotypes of different geographical origin. Critical exposure time may vary from 3-4 wk in arctic-alpine Poa species to 20 wk in some Festuca species. Generally, ecotypes from high latitudes and especially arctic-alpine ones, have wider temperature and daylength limits and require fewer inductive cycles for primary induction than their low-latitude counterparts. In some grasses, especially- arctic-alpine species, initiation of inflorescence primordia takes place during SD primary induction, in others it requires a transition to LD. In the former group, primordia are initiated in the autumn, an important adaptation to arctic-alpine conditions. Critical photoperiods for secondary induction vary from 9-10 h in Mediterranean ecotypes to more than 16 h, and the critical number of LD cycles from four to eight, whereas 12-16 LD cycles are needed for the full saturated response. Generally, high-latitude ecotypes have longer critical photoperiods and require more LD cycles for secondary induction than do those from lower latitudes. Culm elongation, heading and inflorescence development are all promoted by LD. The more inductive cycles given and the more favourable their daylength, the greater is the response. Grasses also have efficient vegetative means of reproduction which are also environmentally controlled. Vegetative proliferation of inflorescences or 'vivipary' is readily induced in habitually seminiferous grasses of both LD and dual induction types, by marginal LD induction of flowering. On the other hand, a high proportion of normal flowering can be obtained in habitually viviparous species and ecotypes by optimal primary and secondary Moral induction. Thus, sexuality is by no means entirely suppressed in viviparous species but is under environmental control. In the high-latitude environment the primary induction requirements are met: by the decreasing daylength and temperature of autumn and winter, while the increasing daylength and temperature of spring and early summer fulfil the secondary induction requirements. Thus, the dual Horal induction control system of the temperate perennial grasses provides an efficient and important mechanism for fitting their life cycles to the dramatic seasonal changes of the high-latitude environment in which they live 
650 4 |a Journal Article 
650 4 |a Dual floral induction 
650 4 |a flowering control 
650 4 |a inflorescence proliferation 
650 4 |a photoperiod 
650 4 |a reproduction 
650 4 |a temperate grasses 
650 4 |a temperature 
650 4 |a vivipary 
773 0 8 |i Enthalten in  |t The New phytologist  |d 1979  |g 128(1994), 2 vom: 20. Okt., Seite 347-362  |w (DE-627)NLM09818248X  |x 1469-8137  |7 nnns 
773 1 8 |g volume:128  |g year:1994  |g number:2  |g day:20  |g month:10  |g pages:347-362 
856 4 0 |u http://dx.doi.org/10.1111/j.1469-8137.1994.tb04019.x  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 128  |j 1994  |e 2  |b 20  |c 10  |h 347-362