ASSIMILATION OF 15 NH4 + BY BEECH (FAGUS SYLVATICA L.) ECTOMYCORRHIZAS
Ammonia assimilation has been followed in ectomycorrhizal roots of Fagus sylvatica. The absorption of ammonium ions was associated with a rapid synthesis of free amino acids in mycorrhizal tissues, glutamine being the most prominent. In the presence of [15 N]ammonium, glutamate, glutamine and alanin...
Veröffentlicht in: | The New phytologist. - 1979. - 102(1986), 1 vom: 20. Jan., Seite 85-94 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
1986
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Fagus sylvatica Glutamine synthetase ectomycorrhizas glutamate dehydrogenase glutamate synthase |
Zusammenfassung: | Ammonia assimilation has been followed in ectomycorrhizal roots of Fagus sylvatica. The absorption of ammonium ions was associated with a rapid synthesis of free amino acids in mycorrhizal tissues, glutamine being the most prominent. In the presence of [15 N]ammonium, glutamate, glutamine and alanine became the most strongly labelled metabolites of ectomycor-rhizas. Nitrogen-15 nuclear magnetic resonance spectroscopy demonstrated that the glutamine amide-N was the most highly enriched component of the extracts. Methionine sulphoximine and albizine, inhibitors of glutamine synthetase and glutamate synthase, almost completely blocked the incorporation of 15 N label into amino acids and induced an accumulation of NH4 + . These observations suggest that in the ammonia-fed beech ectomycorrhizas, ammonia assimilation occurs mainly via the glutamine synthetase/glutamate synthase pathway, and that glutamate dehydrogenase plays little, if any, part in this process. Alternative models for the nitrogen assimilation pathways in fungal and host tissues are presented |
---|---|
Beschreibung: | Date Revised 20.04.2021 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/j.1469-8137.1986.tb00800.x |