|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM324283466 |
003 |
DE-627 |
005 |
20231225190001.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2004 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/j.1469-8137.2004.01130.x
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1080.xml
|
035 |
|
|
|a (DE-627)NLM324283466
|
035 |
|
|
|a (NLM)33873745
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Jones, David L
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Plant and mycorrhizal regulation of rhizodeposition
|
264 |
|
1 |
|c 2004
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 07.07.2021
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The loss of carbon from roots (rhizodeposition) and the consequent proliferation of microorganisms in the surrounding soil, coupled with the physical presence of a root and processes associated with nutrient uptake, gives rise to a unique zone of soil called the rhizosphere. In this review, we bring together evidence to show that roots can directly regulate most aspects of rhizosphere C flow either by regulating the exudation process itself or by directly regulating the recapture of exudates from soil. Root exudates have been hypothesized to be involved in the enhanced mobilization and acquisition of many nutrients from soil or the external detoxification of metals. With few exceptions, there is little mechanistic evidence from soil-based systems to support these propositions. We conclude that much more integrated work in realistic systems is required to quantify the functional significance of these processes in the field. We need to further unravel the complexities of the rhizosphere in order to fully engage with key scientific ideas such as the development of sustainable agricultural systems and the response of ecosystems to climate change. Contents I. Introduction 460 II. What is rhizodeposition? 460 III. Regulation of rhizodeposition 460 IV. How large is the root exudation C flux? 463 V. How responsive is the root exudation C flux? 463 VI. How responsive is the microbial community to root exudation? 464 VII. The role of root exudates in nutrient acquisition 464 VIII. Mycorrhizal fungi and rhizodeposition 471 IX. Future thoughts 474 Acknowledgements 474 References 474
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a carbon flow
|
650 |
|
4 |
|a membrane transport
|
650 |
|
4 |
|a mycorrhizas
|
650 |
|
4 |
|a nutrient cycling
|
650 |
|
4 |
|a rhizosphere
|
650 |
|
4 |
|a root exudation
|
650 |
|
4 |
|a signalling
|
700 |
1 |
|
|a Hodge, Angela
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kuzyakov, Yakov
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 163(2004), 3 vom: 20. Sept., Seite 459-480
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:163
|g year:2004
|g number:3
|g day:20
|g month:09
|g pages:459-480
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/j.1469-8137.2004.01130.x
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 163
|j 2004
|e 3
|b 20
|c 09
|h 459-480
|