Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae)

Polyploidy is viewed as an important mechanism of sympatric speciation, but few studies have documented the reproductive barriers between polyploids and their diploid progenitors or explored the significance of assortative mating for polyploid establishment. Here we synthesize new and existing data...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 161(2004), 3 vom: 20. März, Seite 703-713
1. Verfasser: Husband, Brian C (VerfasserIn)
Weitere Verfasser: Sabara, Holly A
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Review assortative mating geographic isolation pollen competition pollinator fidelity polyploid speciation postzygotic isolation prezygotic isolation simulation
Beschreibung
Zusammenfassung:Polyploidy is viewed as an important mechanism of sympatric speciation, but few studies have documented the reproductive barriers between polyploids and their diploid progenitors or explored the significance of assortative mating for polyploid establishment. Here we synthesize new and existing data on five prezygotic (geographic isolation, flowering asynchrony, pollinator fidelity, self-pollination, gametic selection) and two postzygotic (selection against triploid hybrids, inbreeding depression) reproductive barriers between diploid and autotetraploid individuals of the perennial plant Chamerion angustifolium. We also present estimates of realized rates of between-ploidy mating and examine the impact of assortative mating on polyploid dynamics using computer simulation. Reproductive isolation (measured from 0 to 1) was enforced by each barrier, including: geographic separation (RI = 0.41), flowering asynchrony (0.13), pollinator fidelity (0.85), self-pollination (0.44), gametic selection (0.44) and postzygotic isolation (0.87). Total reproductive isolation was 0.997, with the largest relative contributions by geography (41%) and pollinator fidelity (44%). Prezygotic barriers accounted for 97.6% isolation overall; however, tetraploids were more assortatively mating (98%) than diploids (79%). Realized reproductive isolation between ploidy levels in sympatric populations was 87% and tetraploids produced significantly fewer triploids than did diploids. Simulations indicated that the observed prezygotic isolation will reduce the strength of minority disadvantage acting on tetraploids and increase the importance of differences in viability and fertility between cytotypes in regulating polyploidy establishment
Beschreibung:Date Revised 20.04.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1469-8137
DOI:10.1046/j.1469-8137.2004.00998.x