A zinc-adapted fungus protects pines from zinc stress

•  Here we investigated zinc tolerance of ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. An ectomycorrhizal genotype of Suillus bovinus, collected from a Zn-contaminated site and showing adaptive Zn tolerance in vitro, was compared with a nonadapted isolate from a nonpolluted area. •  A do...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 161(2004), 2 vom: 25. Feb., Seite 549-555
1. Verfasser: Adriaensen, Kristin (VerfasserIn)
Weitere Verfasser: Van Der Lelie, Daniël, Van Laere, André, Vangronsveld, Jaco, Colpaert, Jan V
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2004
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Pinus sylvestris (Scots pine) Suillus bovinus Zn tolerance Zn toxicity ectomycorrhizal symbiosis nutrient uptake phytoremediation
Beschreibung
Zusammenfassung:•  Here we investigated zinc tolerance of ectomycorrhizal Scots pine (Pinus sylvestris) seedlings. An ectomycorrhizal genotype of Suillus bovinus, collected from a Zn-contaminated site and showing adaptive Zn tolerance in vitro, was compared with a nonadapted isolate from a nonpolluted area. •  A dose-response experiment was performed. Dynamics of plant and fungal development, and phosphate and ammonium uptake capacity, were assessed under increasing Zn stress. Effects of Zn on transpiration, nutrient content and Zn accumulation were analysed. •  Significant Zn-inoculation interaction effects were observed for several responses measured, including uptake rates of phosphate and ammonium; phosphorus, iron and Zn content in shoots; transpiration; biomass of external mycelia; and fungal biomass in roots. •  The Zn-tolerant S. bovinus genotype was particularly efficient in protecting pines from Zn stress. The growth of a Zn-sensitive genotype from a normal wild-type population was inhibited at high Zn concentrations, and this isolate could not sustain the pines' acquisition of nutrients. This study shows that well adapted microbial root symbionts are a major component of the survival strategy of trees that colonize contaminated soils
Beschreibung:Date Revised 20.04.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1469-8137
DOI:10.1046/j.1469-8137.2003.00941.x