Deep Dynamic Scene Deblurring for Unconstrained Dual-Lens Cameras

Dual-lens (DL) cameras capture depth information, and hence enable several important vision applications. Most present-day DL cameras employ unconstrained settings in the two views in order to support extended functionalities. But a natural hindrance to their working is the ubiquitous motion blur en...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 19., Seite 4479-4491
1. Verfasser: Mohan, M R Mahesh (VerfasserIn)
Weitere Verfasser: Nithin, G K, Rajagopalan, A N
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM324267592
003 DE-627
005 20250301114002.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3072856  |2 doi 
028 5 2 |a pubmed25n1080.xml 
035 |a (DE-627)NLM324267592 
035 |a (NLM)33872148 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mohan, M R Mahesh  |e verfasserin  |4 aut 
245 1 0 |a Deep Dynamic Scene Deblurring for Unconstrained Dual-Lens Cameras 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Dual-lens (DL) cameras capture depth information, and hence enable several important vision applications. Most present-day DL cameras employ unconstrained settings in the two views in order to support extended functionalities. But a natural hindrance to their working is the ubiquitous motion blur encountered due to camera motion, object motion, or both. However, there exists not a single work for the prospective unconstrained DL cameras that addresses this problem (so called dynamic scene deblurring). Due to the unconstrained settings, degradations in the two views need not be the same, and consequently, naive deblurring approaches produce inconsistent left-right views and disrupt scene-consistent disparities. In this paper, we address this problem using Deep Learning and make three important contributions. First, we address the root cause of view-inconsistency in standard deblurring architectures using a Coherent Fusion Module. Second, we address an inherent problem in unconstrained DL deblurring that disrupts scene-consistent disparities by introducing a memory-efficient Adaptive Scale-space Approach. This signal processing formulation allows accommodation of different image-scales in the same network without increasing the number of parameters. Finally, we propose a module to address the Space-variant and Image-dependent nature of dynamic scene blur. We experimentally show that our proposed techniques have substantial practical merit 
650 4 |a Journal Article 
700 1 |a Nithin, G K  |e verfasserin  |4 aut 
700 1 |a Rajagopalan, A N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 19., Seite 4479-4491  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:19  |g pages:4479-4491 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3072856  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 19  |h 4479-4491