DeepGCNs : Making GCNs Go as Deep as CNNs

Convolutional neural networks (CNNs) have been very successful at solving a variety of computer vision tasks such as object classification and detection, semantic segmentation, activity understanding, to name just a few. One key enabling factor for their great performance has been the ability to tra...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 45(2023), 6 vom: 19. Juni, Seite 6923-6939
1. Verfasser: Li, Guohao (VerfasserIn)
Weitere Verfasser: Muller, Matthias, Qian, Guocheng, Delgadillo, Itzel C, Abualshour, Abdulellah, Thabet, Ali, Ghanem, Bernard
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2023
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM32426755X
003 DE-627
005 20250301114001.0
007 cr uuu---uuuuu
008 231225s2023 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3074057  |2 doi 
028 5 2 |a pubmed25n1080.xml 
035 |a (DE-627)NLM32426755X 
035 |a (NLM)33872143 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Guohao  |e verfasserin  |4 aut 
245 1 0 |a DeepGCNs  |b Making GCNs Go as Deep as CNNs 
264 1 |c 2023 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 07.05.2023 
500 |a Date Revised 07.05.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Convolutional neural networks (CNNs) have been very successful at solving a variety of computer vision tasks such as object classification and detection, semantic segmentation, activity understanding, to name just a few. One key enabling factor for their great performance has been the ability to train very deep networks. Despite their huge success in many tasks, CNNs do not work well with non-euclidean data, which is prevalent in many real-world applications. Graph Convolutional Networks (GCNs) offer an alternative that allows for non-Eucledian data input to a neural network. While GCNs already achieve encouraging results, they are currently limited to architectures with a relatively small number of layers, primarily due to vanishing gradients during training. This work transfers concepts such as residual/dense connections and dilated convolutions from CNNs to GCNs in order to successfully train very deep GCNs. We show the benefit of using deep GCNs (with as many as 112 layers) experimentally across various datasets and tasks. Specifically, we achieve very promising performance in part segmentation and semantic segmentation on point clouds and in node classification of protein functions across biological protein-protein interaction (PPI) graphs. We believe that the insights in this work will open avenues for future research on GCNs and their application to further tasks not explored in this paper. The source code for this work is available at https://github.com/lightaime/deep_gcns_torch and https://github.com/lightaime/deep_gcns for PyTorch and TensorFlow implementations respectively 
650 4 |a Journal Article 
700 1 |a Muller, Matthias  |e verfasserin  |4 aut 
700 1 |a Qian, Guocheng  |e verfasserin  |4 aut 
700 1 |a Delgadillo, Itzel C  |e verfasserin  |4 aut 
700 1 |a Abualshour, Abdulellah  |e verfasserin  |4 aut 
700 1 |a Thabet, Ali  |e verfasserin  |4 aut 
700 1 |a Ghanem, Bernard  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 45(2023), 6 vom: 19. Juni, Seite 6923-6939  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:45  |g year:2023  |g number:6  |g day:19  |g month:06  |g pages:6923-6939 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3074057  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 45  |j 2023  |e 6  |b 19  |c 06  |h 6923-6939