Defect Repair of Polyelectrolyte Bilayers Using SDS : The Action of Micelles Versus Monomers

Defects within single, double, and triple polyelectrolyte bilayers derived from poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethyammonium chloride) (PDDA) have been repaired using aqueous solutions of sodium dodecyl sulfate (SDS), as evidenced by a reduction in their permeability and an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 37(2021), 17 vom: 04. Mai, Seite 5306-5310
1. Verfasser: Pramanik, Nabendu B (VerfasserIn)
Weitere Verfasser: Shaligram, Sayali, Regen, Steven L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Defects within single, double, and triple polyelectrolyte bilayers derived from poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethyammonium chloride) (PDDA) have been repaired using aqueous solutions of sodium dodecyl sulfate (SDS), as evidenced by a reduction in their permeability and an increase in their permeation selectivity. In contrast to the use of monomer solutions of SDS, which were moderately effective in repairing only double and triple bilayers, micellar solutions proved highly effective for all three assemblies. Evidence for intact micelles or micellar fragments being deposited on the surface of single bilayers of PSS/PDDA has been obtained from a combination of atomic force microscopy, X-ray photoelectron spectroscopy, ellipsometry, and contact angle measurements. Observed CO2 permeances of ca. 200 GPU and CO2/N2 selectivities of ca. 30 for SDS-repaired, single bilayers of PSS/PDDA suggest that further development of such assemblies could have the practical potential for the separation of CO2 from N2 in the flue gas
Beschreibung:Date Revised 04.05.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.1c00392