Evaluating Lower Computational Burden Approaches for Calibration of Large Environmental Models

© 2021 The Authors. Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association.

Bibliographische Detailangaben
Veröffentlicht in:Ground water. - 1979. - 59(2021), 6 vom: 18. Nov., Seite 788-798
1. Verfasser: Hunt, Randall J (VerfasserIn)
Weitere Verfasser: White, Jeremy T, Duncan, Leslie L, Haugh, Connor J, Doherty, John
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Ground water
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM324212372
003 DE-627
005 20231225185832.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gwat.13106  |2 doi 
028 5 2 |a pubmed24n1080.xml 
035 |a (DE-627)NLM324212372 
035 |a (NLM)33866566 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hunt, Randall J  |e verfasserin  |4 aut 
245 1 0 |a Evaluating Lower Computational Burden Approaches for Calibration of Large Environmental Models 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 18.11.2021 
500 |a Date Revised 31.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Groundwater published by Wiley Periodicals LLC on behalf of National Ground Water Association. 
520 |a Realistic environmental models used for decision making typically require a highly parameterized approach. Calibration of such models is computationally intensive because widely used parameter estimation approaches require individual forward runs for each parameter adjusted. These runs construct a parameter-to-observation sensitivity, or Jacobian, matrix used to develop candidate parameter upgrades. Parameter estimation algorithms are also commonly adversely affected by numerical noise in the calculated sensitivities within the Jacobian matrix, which can result in unnecessary parameter estimation iterations and less model-to-measurement fit. Ideally, approaches to reduce the computational burden of parameter estimation will also increase the signal-to-noise ratio related to observations influential to the parameter estimation even as the number of forward runs decrease. In this work a simultaneous increments, an iterative ensemble smoother (IES), and a randomized Jacobian approach were compared to a traditional approach that uses a full Jacobian matrix. All approaches were applied to the same model developed for decision making in the Mississippi Alluvial Plain, USA. Both the IES and randomized Jacobian approach achieved a desirable fit and similar parameter fields in many fewer forward runs than the traditional approach; in both cases the fit was obtained in fewer runs than the number of adjustable parameters. The simultaneous increments approach did not perform as well as the other methods due to inability to overcome suboptimal dropping of parameter sensitivities. This work indicates that use of highly efficient algorithms can greatly speed parameter estimation, which in turn increases calibration vetting and utility of realistic models used for decision making 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a White, Jeremy T  |e verfasserin  |4 aut 
700 1 |a Duncan, Leslie L  |e verfasserin  |4 aut 
700 1 |a Haugh, Connor J  |e verfasserin  |4 aut 
700 1 |a Doherty, John  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Ground water  |d 1979  |g 59(2021), 6 vom: 18. Nov., Seite 788-798  |w (DE-627)NLM098182528  |x 1745-6584  |7 nnns 
773 1 8 |g volume:59  |g year:2021  |g number:6  |g day:18  |g month:11  |g pages:788-798 
856 4 0 |u http://dx.doi.org/10.1111/gwat.13106  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 59  |j 2021  |e 6  |b 18  |c 11  |h 788-798