Reciprocal transfer of carbon isotopes between ectomycorrhizal Betula papyrifera and Pseudotsuga menziesii

Interspecific C transfer was studied in laboratory microcosms containing pairs of 6-month-old Betula papyrifera Marsh, and Pseudotsuga menziesii (Mirb.) Franca seedlings growing in individual, root-restrictive (28μm pore size) pouches filled with field soil. Interspecific transfer was examined by re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 137(1997), 3 vom: 18. Nov., Seite 529-542
1. Verfasser: Simard, Suzanne W (VerfasserIn)
Weitere Verfasser: Jones, Melanie D, Durall, Daniel M, Perry, David A, Myrold, David D, Molina, Randy
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1997
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Betula papyrifera (paper birch) Ectomycorrhiza Pseudotsuga menziesii (Douglas fir) carbon isotope carbon transfer
Beschreibung
Zusammenfassung:Interspecific C transfer was studied in laboratory microcosms containing pairs of 6-month-old Betula papyrifera Marsh, and Pseudotsuga menziesii (Mirb.) Franca seedlings growing in individual, root-restrictive (28μm pore size) pouches filled with field soil. Interspecific transfer was examined by reciprocal labelling of seedlings with 13 CO2(gas) and 14 CO2(gas) . At the time of labelling, the root zones of ectomycorrhizal (EM) B. papyrifera and P. menziesii were interconnected by an extensive network of EM mycelium. Carbon transferred through EM connections was distinguished from that through soil pathways by comparing microcosms where interconnecting hyphae were left intact vs. those where they were severed immediately before labelling. Transfer was bidirectional, and represented 5 % of total isotope uptake by both B. papyrifera and P. menziesii together. P. menziesii received on average 50% more 14 C and 66% more 13 C from paper birch than vice versa, however, differences between species were not statistically significant. Neither net nor bidirectional transfer differed between severing treatments, leaving in question the relative importance of EM hyphae versus soil transfer pathways. The tendency for P. menziesii to receive more isotope than B. papyrifera corresponded with a 10-fold greater net photosynthetic rate per seedling and two-fold greater foliar N concentration of B. papyrifera than P. menziesii
Beschreibung:Date Revised 19.04.2021
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1469-8137
DOI:10.1046/j.1469-8137.1997.00834.x