The leafy stems of Sphagnum (Bryophyta) contain highly differentiated polarized cells with axial arrays of endoplasmic microtubules

Contrary to the long-held belief that, internal to the cortical sterome, the central region of Sphagnum stems comprises unspecialized parenchyma, the present light- and electron-microscope study has revealed that these cells in fact have a highly specialized cytoplasmic organization. Their key featu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 140(1998), 3 vom: 18. Nov., Seite 567-579
1. Verfasser: Ligrone, Roberto (VerfasserIn)
Weitere Verfasser: Duckett, Jeffrey G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 1998
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Sphagnum cytoplasmic polarity microtubules plasmodesmata symplasmic transport
Beschreibung
Zusammenfassung:Contrary to the long-held belief that, internal to the cortical sterome, the central region of Sphagnum stems comprises unspecialized parenchyma, the present light- and electron-microscope study has revealed that these cells in fact have a highly specialized cytoplasmic organization. Their key features are: (a) the absence of large central vacuoles; (b) a spindle-shaped nucleus positioned internally; (c) a prominent axial system of endoplasmic microtubules associated with the nucleus, mitochondria, pleomorphic vacuoles, and membrane-bounded tubules and vesicles; (d) a distinct cytoplasmic polarization, with the cellular region near the capitulum being richer in organelles than the basal region; and (e) a high frequency of plasmodesmata in the cross walls with an enlarged median region containing no discernible desmotubule. Such a distinctive combination of cytological features has been hitherto only described for putative food-conducting cells in bryoid mosses. The results introduce a major new character common to Sphagnum and bryoid mosses and strongly suggest that this cytological organization underlines cellular specialization in symplasmic transport
Beschreibung:Date Revised 19.04.2021
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1469-8137
DOI:10.1111/j.1469-8137.1998.00298.x