Unsupervised Monocular Depth Estimation via Recursive Stereo Distillation

Existing unsupervised monocular depth estimation methods resort to stereo image pairs instead of ground-truth depth maps as supervision to predict scene depth. Constrained by the type of monocular input in testing phase, they fail to fully exploit the stereo information through the network during tr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 15., Seite 4492-4504
1. Verfasser: Ye, Xinchen (VerfasserIn)
Weitere Verfasser: Fan, Xin, Zhang, Mingliang, Xu, Rui, Zhong, Wei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32411771X
003 DE-627
005 20231225185632.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3072215  |2 doi 
028 5 2 |a pubmed24n1080.xml 
035 |a (DE-627)NLM32411771X 
035 |a (NLM)33856994 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ye, Xinchen  |e verfasserin  |4 aut 
245 1 0 |a Unsupervised Monocular Depth Estimation via Recursive Stereo Distillation 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 28.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Existing unsupervised monocular depth estimation methods resort to stereo image pairs instead of ground-truth depth maps as supervision to predict scene depth. Constrained by the type of monocular input in testing phase, they fail to fully exploit the stereo information through the network during training, leading to the unsatisfactory performance of depth estimation. Therefore, we propose a novel architecture which consists of a monocular network (Mono-Net) that infers depth maps from monocular inputs, and a stereo network (Stereo-Net) that further excavates the stereo information by taking stereo pairs as input. During training, the sophisticated Stereo-Net guides the learning of Mono-Net and devotes to enhance the performance of Mono-Net without changing its network structure and increasing its computational burden. Thus, monocular depth estimation with superior performance and fast runtime can be achieved in testing phase by only using the lightweight Mono-Net. For the proposed framework, our core idea lies in: 1) how to design the Stereo-Net so that it can accurately estimate depth maps by fully exploiting the stereo information; 2) how to use the sophisticated Stereo-Net to improve the performance of Mono-Net. To this end, we propose a recursive estimation and refinement strategy for Stereo-Net to boost its performance of depth estimation. Meanwhile, a multi-space knowledge distillation scheme is designed to help Mono-Net amalgamate the knowledge and master the expertise from Stereo-Net in a multi-scale fashion. Experiments demonstrate that our method achieves the superior performance of monocular depth estimation in comparison with other state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Fan, Xin  |e verfasserin  |4 aut 
700 1 |a Zhang, Mingliang  |e verfasserin  |4 aut 
700 1 |a Xu, Rui  |e verfasserin  |4 aut 
700 1 |a Zhong, Wei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 15., Seite 4492-4504  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:15  |g pages:4492-4504 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3072215  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 15  |h 4492-4504