Weakly-Supervised Salient Object Detection With Saliency Bounding Boxes

In this paper, we propose a novel form of weak supervision for salient object detection (SOD) based on saliency bounding boxes, which are minimum rectangular boxes enclosing the salient objects. Based on this idea, we propose a novel weakly-supervised SOD method, by predicting pixel-level pseudo gro...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 15., Seite 4423-4435
1. Verfasser: Liu, Yuxuan (VerfasserIn)
Weitere Verfasser: Wang, Pengjie, Cao, Ying, Liang, Zijian, Lau, Rynson W H
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:In this paper, we propose a novel form of weak supervision for salient object detection (SOD) based on saliency bounding boxes, which are minimum rectangular boxes enclosing the salient objects. Based on this idea, we propose a novel weakly-supervised SOD method, by predicting pixel-level pseudo ground truth saliency maps from just saliency bounding boxes. Our method first takes advantage of the unsupervised SOD methods to generate initial saliency maps and addresses the over/under prediction problems, to obtain the initial pseudo ground truth saliency maps. We then iteratively refine the initial pseudo ground truth by learning a multi-task map refinement network with saliency bounding boxes. Finally, the final pseudo saliency maps are used to supervise the training of a salient object detector. Experimental results show that our method outperforms state-of-the-art weakly-supervised methods
Beschreibung:Date Revised 22.04.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3071691