Attention in Attention Networks for Person Retrieval

This paper generalizes the Attention in Attention (AiA) mechanism, in P. Fang et al., 2019 by employing explicit mapping in reproducing kernel Hilbert spaces to generate attention values of the input feature map. The AiA mechanism models the capacity of building inter-dependencies among the local an...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 15. Sept., Seite 4626-4641
1. Verfasser: Fang, Pengfei (VerfasserIn)
Weitere Verfasser: Zhou, Jieming, Roy, Soumava Kumar, Ji, Pan, Petersson, Lars, Harandi, Mehrtash
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM324117582
003 DE-627
005 20250301110135.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3073512  |2 doi 
028 5 2 |a pubmed25n1080.xml 
035 |a (DE-627)NLM324117582 
035 |a (NLM)33856981 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Pengfei  |e verfasserin  |4 aut 
245 1 0 |a Attention in Attention Networks for Person Retrieval 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 08.08.2022 
500 |a Date Revised 14.09.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a This paper generalizes the Attention in Attention (AiA) mechanism, in P. Fang et al., 2019 by employing explicit mapping in reproducing kernel Hilbert spaces to generate attention values of the input feature map. The AiA mechanism models the capacity of building inter-dependencies among the local and global features by the interaction of inner and outer attention modules. Besides a vanilla AiA module, termed linear attention with AiA, two non-linear counterparts, namely, second-order polynomial attention and Gaussian attention, are also proposed to utilize the non-linear properties of the input features explicitly, via the second-order polynomial kernel and Gaussian kernel approximation. The deep convolutional neural network, equipped with the proposed AiA blocks, is referred to as Attention in Attention Network (AiA-Net). The AiA-Net learns to extract a discriminative pedestrian representation, which combines complementary person appearance and corresponding part features. Extensive ablation studies verify the effectiveness of the AiA mechanism and the use of non-linear features hidden in the feature map for attention design. Furthermore, our approach outperforms current state-of-the-art by a considerable margin across a number of benchmarks. In addition, state-of-the-art performance is also achieved in the video person retrieval task with the assistance of the proposed AiA blocks 
650 4 |a Journal Article 
700 1 |a Zhou, Jieming  |e verfasserin  |4 aut 
700 1 |a Roy, Soumava Kumar  |e verfasserin  |4 aut 
700 1 |a Ji, Pan  |e verfasserin  |4 aut 
700 1 |a Petersson, Lars  |e verfasserin  |4 aut 
700 1 |a Harandi, Mehrtash  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 15. Sept., Seite 4626-4641  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnas 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:15  |g month:09  |g pages:4626-4641 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3073512  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 15  |c 09  |h 4626-4641