Deep Constraint-Based Propagation in Graph Neural Networks

The popularity of deep learning techniques renewed the interest in neural architectures able to process complex structures that can be represented using graphs, inspired by Graph Neural Networks (GNNs). We focus our attention on the originally proposed GNN model of Scarselli et al. 2009, which encod...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 2 vom: 15. Feb., Seite 727-739
1. Verfasser: Tiezzi, Matteo (VerfasserIn)
Weitere Verfasser: Marra, Giuseppe, Melacci, Stefano, Maggini, Marco
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM324117574
003 DE-627
005 20231225185632.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3073504  |2 doi 
028 5 2 |a pubmed24n1080.xml 
035 |a (DE-627)NLM324117574 
035 |a (NLM)33856980 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tiezzi, Matteo  |e verfasserin  |4 aut 
245 1 0 |a Deep Constraint-Based Propagation in Graph Neural Networks 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.03.2022 
500 |a Date Revised 01.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a The popularity of deep learning techniques renewed the interest in neural architectures able to process complex structures that can be represented using graphs, inspired by Graph Neural Networks (GNNs). We focus our attention on the originally proposed GNN model of Scarselli et al. 2009, which encodes the state of the nodes of the graph by means of an iterative diffusion procedure that, during the learning stage, must be computed at every epoch, until the fixed point of a learnable state transition function is reached, propagating the information among the neighbouring nodes. We propose a novel approach to learning in GNNs, based on constrained optimization in the Lagrangian framework. Learning both the transition function and the node states is the outcome of a joint process, in which the state convergence procedure is implicitly expressed by a constraint satisfaction mechanism, avoiding iterative epoch-wise procedures and the network unfolding. Our computational structure searches for saddle points of the Lagrangian in the adjoint space composed of weights, nodes state variables and Lagrange multipliers. This process is further enhanced by multiple layers of constraints that accelerate the diffusion process. An experimental analysis shows that the proposed approach compares favourably with popular models on several benchmarks 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Marra, Giuseppe  |e verfasserin  |4 aut 
700 1 |a Melacci, Stefano  |e verfasserin  |4 aut 
700 1 |a Maggini, Marco  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 2 vom: 15. Feb., Seite 727-739  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:2  |g day:15  |g month:02  |g pages:727-739 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3073504  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 2  |b 15  |c 02  |h 727-739