Hyperspectral Texture Metrology Based on Joint Probability of Spectral and Spatial Distribution

Texture characterization from the metrological point of view is addressed in order to establish a physically relevant and directly interpretable feature. In this regard, a generic formulation is proposed to simultaneously capture the spectral and spatial complexity in hyperspectral images. The featu...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 13., Seite 4341-4356
1. Verfasser: Chu, Rui Jian (VerfasserIn)
Weitere Verfasser: Richard, Noel, Chatoux, Hermine, Fernandez-Maloigne, Christine, Hardeberg, Jon Yngve
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM324032048
003 DE-627
005 20231225185443.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3071557  |2 doi 
028 5 2 |a pubmed24n1080.xml 
035 |a (DE-627)NLM324032048 
035 |a (NLM)33848245 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chu, Rui Jian  |e verfasserin  |4 aut 
245 1 0 |a Hyperspectral Texture Metrology Based on Joint Probability of Spectral and Spatial Distribution 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Texture characterization from the metrological point of view is addressed in order to establish a physically relevant and directly interpretable feature. In this regard, a generic formulation is proposed to simultaneously capture the spectral and spatial complexity in hyperspectral images. The feature, named relative spectral difference occurrence matrix (RSDOM) is thus constructed in a multireference, multidirectional, and multiscale context. As validation, its performance is assessed in three versatile tasks. In texture classification on HyTexiLa, content-based image retrieval (CBIR) on ICONES-HSI, and land cover classification on Salinas, RSDOM registers 98.5% accuracy, 80.3% precision (for the top 10 retrieved images), and 96.0% accuracy (after post-processing) respectively, outcompeting GLCM, Gabor filter, LBP, SVM, CCF, CNN, and GCN. Analysis shows the advantage of RSDOM in terms of feature size (a mere 126, 30, and 20 scalars using GMM in order of the three tasks) as well as metrological validity in texture representation regardless of the spectral range, resolution, and number of bands 
650 4 |a Journal Article 
700 1 |a Richard, Noel  |e verfasserin  |4 aut 
700 1 |a Chatoux, Hermine  |e verfasserin  |4 aut 
700 1 |a Fernandez-Maloigne, Christine  |e verfasserin  |4 aut 
700 1 |a Hardeberg, Jon Yngve  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 13., Seite 4341-4356  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:13  |g pages:4341-4356 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3071557  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 13  |h 4341-4356