Understanding Pixel-Level 2D Image Semantics With 3D Keypoint Knowledge Engine

Pixel-level 2D object semantic understanding is an important topic in computer vision and could help machine deeply understand objects (e.g., functionality and affordance) in our daily life. However, most previous methods directly train on correspondences in 2D images, which is end-to-end but loses...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 13. Sept., Seite 5780-5795
1. Verfasser: You, Yang (VerfasserIn)
Weitere Verfasser: Li, Chengkun, Lou, Yujing, Cheng, Zhoujun, Li, Liangwei, Ma, Lizhuang, Wang, Weiming, Lu, Cewu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM324032013
003 DE-627
005 20231225185443.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3072659  |2 doi 
028 5 2 |a pubmed24n1080.xml 
035 |a (DE-627)NLM324032013 
035 |a (NLM)33848241 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a You, Yang  |e verfasserin  |4 aut 
245 1 0 |a Understanding Pixel-Level 2D Image Semantics With 3D Keypoint Knowledge Engine 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Pixel-level 2D object semantic understanding is an important topic in computer vision and could help machine deeply understand objects (e.g., functionality and affordance) in our daily life. However, most previous methods directly train on correspondences in 2D images, which is end-to-end but loses plenty of information in 3D spaces. In this paper, we propose a new method on predicting image corresponding semantics in 3D domain and then projecting them back onto 2D images to achieve pixel-level understanding. In order to obtain reliable 3D semantic labels that are absent in current image datasets, we build a large scale keypoint knowledge engine called KeypointNet, which contains 103,450 keypoints and 8,234 3D models from 16 object categories. Our method leverages the advantages in 3D vision and can explicitly reason about objects self-occlusion and visibility. We show that our method gives comparative and even superior results on standard semantic benchmarks 
650 4 |a Journal Article 
700 1 |a Li, Chengkun  |e verfasserin  |4 aut 
700 1 |a Lou, Yujing  |e verfasserin  |4 aut 
700 1 |a Cheng, Zhoujun  |e verfasserin  |4 aut 
700 1 |a Li, Liangwei  |e verfasserin  |4 aut 
700 1 |a Ma, Lizhuang  |e verfasserin  |4 aut 
700 1 |a Wang, Weiming  |e verfasserin  |4 aut 
700 1 |a Lu, Cewu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 13. Sept., Seite 5780-5795  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:13  |g month:09  |g pages:5780-5795 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3072659  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 13  |c 09  |h 5780-5795