Quantifying high-temperature stress on soybean canopy photosynthesis : The unique role of sun-induced chlorophyll fluorescence

© 2021 John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 11 vom: 12. Juni, Seite 2403-2415
1. Verfasser: Kimm, Hyungsuk (VerfasserIn)
Weitere Verfasser: Guan, Kaiyu, Burroughs, Charles H, Peng, Bin, Ainsworth, Elizabeth A, Bernacchi, Carl J, Moore, Caitlin E, Kumagai, Etsushi, Yang, Xi, Berry, Joseph A, Wu, Genghong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article T-FACE experiment canopy chamber high-temperature stress soybean canopy photosynthesis spectroscopy sun-induced chlorophyll fluorescence Chlorophyll 1406-65-1
LEADER 01000caa a22002652 4500
001 NLM323999107
003 DE-627
005 20231227130502.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15603  |2 doi 
028 5 2 |a pubmed24n1224.xml 
035 |a (DE-627)NLM323999107 
035 |a (NLM)33844873 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kimm, Hyungsuk  |e verfasserin  |4 aut 
245 1 0 |a Quantifying high-temperature stress on soybean canopy photosynthesis  |b The unique role of sun-induced chlorophyll fluorescence 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2021 
500 |a Date Revised 13.12.2023 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 John Wiley & Sons Ltd. 
520 |a High temperature and accompanying high vapor pressure deficit often stress plants without causing distinctive changes in plant canopy structure and consequential spectral signatures. Sun-induced chlorophyll fluorescence (SIF), because of its mechanistic link with photosynthesis, may better detect such stress than remote sensing techniques relying on spectral reflectance signatures of canopy structural changes. However, our understanding about physiological mechanisms of SIF and its unique potential for physiological stress detection remains less clear. In this study, we measured SIF at a high-temperature experiment, Temperature Free-Air Controlled Enhancement, to explore the potential of SIF for physiological investigations. The experiment provided a gradient of soybean canopy temperature with 1.5, 3.0, 4.5, and 6.0°C above the ambient canopy temperature in the open field environments. SIF yield, which is normalized by incident radiation and the fraction of absorbed photosynthetically active radiation, showed a high correlation with photosynthetic light use efficiency (r = 0.89) and captured dynamic plant responses to high-temperature conditions. SIF yield was affected by canopy structural and plant physiological changes associated with high-temperature stress (partial correlation r = 0.60 and -0.23). Near-infrared reflectance of vegetation, only affected by canopy structural changes, was used to minimize the canopy structural impact on SIF yield and to retrieve physiological SIF yield (ΦF ) signals. ΦF further excludes the canopy structural impact than SIF yield and indicates plant physiological variability, and we found that ΦF outperformed SIF yield in responding to physiological stress (r = -0.37). Our findings highlight that ΦF sensitively responded to the physiological downregulation of soybean gross primary productivity under high temperature. ΦF , if reliably derived from satellite SIF, can support monitoring regional crop growth and different ecosystems' vegetation productivity under environmental stress and climate change 
650 4 |a Journal Article 
650 4 |a T-FACE experiment 
650 4 |a canopy chamber 
650 4 |a high-temperature stress 
650 4 |a soybean canopy photosynthesis 
650 4 |a spectroscopy 
650 4 |a sun-induced chlorophyll fluorescence 
650 7 |a Chlorophyll  |2 NLM 
650 7 |a 1406-65-1  |2 NLM 
700 1 |a Guan, Kaiyu  |e verfasserin  |4 aut 
700 1 |a Burroughs, Charles H  |e verfasserin  |4 aut 
700 1 |a Peng, Bin  |e verfasserin  |4 aut 
700 1 |a Ainsworth, Elizabeth A  |e verfasserin  |4 aut 
700 1 |a Bernacchi, Carl J  |e verfasserin  |4 aut 
700 1 |a Moore, Caitlin E  |e verfasserin  |4 aut 
700 1 |a Kumagai, Etsushi  |e verfasserin  |4 aut 
700 1 |a Yang, Xi  |e verfasserin  |4 aut 
700 1 |a Berry, Joseph A  |e verfasserin  |4 aut 
700 1 |a Wu, Genghong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 11 vom: 12. Juni, Seite 2403-2415  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:11  |g day:12  |g month:06  |g pages:2403-2415 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15603  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 11  |b 12  |c 06  |h 2403-2415