Tailoring Surface Self-Organization for Nanoscale Polygonal Morphology on Germanium

© 2021 Wiley-VCH GmbH.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 33(2021), 21 vom: 30. Mai, Seite e2008668
1. Verfasser: Kamaliya, Bhaveshkumar (VerfasserIn)
Weitere Verfasser: Garg, Vivek, Liu, Amelia C Y, Chen, Yu Emily, Aslam, Mohammed, Fu, Jing, Mote, Rakesh G
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article focused ion beam nanofabrication polygonal nanostructures surface self-organization
Beschreibung
Zusammenfassung:© 2021 Wiley-VCH GmbH.
The evolution of polygonal-shaped nanoholes on the (100) surface of germanium, aided by focused ion beam induced self-organization, is presented. The energetic beam of ions creates a viscous phase which, at a thermodynamical minimum, leads to surface self-organization. A directed viscous-flow along the predefined nanoholes provides well-ordered polygonal nanostructures, ranging from triangles to hexagons and octagons, as desired. The amorphization exhibiting a confined viscous-flow at the walls of nanoholes is attributed to the localized melting zones induced by site-specific thermal spikes during ion irradiation, as revealed by microscopy and molecular dynamics studies. This leads to a local self-organization in the vicinity of each circular nanohole via a viscous-fingering process at the nanoscale. Such controlled self-organization, with the help of a predefined scanning grid, transforms the circular holes into the desired polygonal shape. The present morphology manipulation promises to surmount the barriers concerning the size reduction efforts in the field of nanofabrication
Beschreibung:Date Revised 27.05.2021
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.202008668