Optimizing laboratory X-ray diffraction contrast tomography for grain structure characterization of pure iron

© Adam Lindkvist et al. 2021.

Bibliographische Detailangaben
Veröffentlicht in:Journal of applied crystallography. - 1998. - 54(2021), Pt 1 vom: 01. Feb., Seite 99-110
1. Verfasser: Lindkvist, Adam (VerfasserIn)
Weitere Verfasser: Fang, Haixing, Juul Jensen, Dorte, Zhang, Yubin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Journal of applied crystallography
Schlagworte:Journal Article X-ray diffraction contrast tomography grain mapping iron laboratory X-rays
LEADER 01000caa a22002652 4500
001 NLM323887945
003 DE-627
005 20240331233423.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1107/S1600576720014673  |2 doi 
028 5 2 |a pubmed24n1358.xml 
035 |a (DE-627)NLM323887945 
035 |a (NLM)33833643 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lindkvist, Adam  |e verfasserin  |4 aut 
245 1 0 |a Optimizing laboratory X-ray diffraction contrast tomography for grain structure characterization of pure iron 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.03.2024 
500 |a published: Electronic-eCollection 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © Adam Lindkvist et al. 2021. 
520 |a Laboratory diffraction contrast tomography (LabDCT) is a recently developed technique for 3D nondestructive grain mapping using a conical polychromatic beam from a laboratory-based X-ray source. The effects of experimental parameters, including accelerating voltage, exposure time and number of projections used for reconstruction, on the characterization of the 3D grain structure in an iron sample are quantified. The experiments were conducted using a commercial X-ray tomography system, ZEISS Xradia 520 Versa, equipped with a LabDCT module; and the data analysis was performed using the software package GrainMapper3D, which produces a 3D reconstruction from binarized 2D diffraction patterns. It is found that the exposure time directly affects the background noise level and thus the ability to distinguish weak spots of small grains from the background. With the assistance of forward simulations, it is found that spots from the first three strongest {hkl} families of a large grain can be seen with as few as 30-40 projections, which is sufficient for indexing the crystallographic orientation and resolving the grain shape with a reasonably high accuracy. It is also shown that the electron current is a more important factor than the accelerating voltage to be considered for optimizing the photon numbers with energies in the range of 20-60 keV. This energy range is the most important one for diffraction of common metals, e.g. iron and aluminium. Several suggestions for optimizing LabDCT experiments and 3D volume reconstruction are finally provided 
650 4 |a Journal Article 
650 4 |a X-ray diffraction contrast tomography 
650 4 |a grain mapping 
650 4 |a iron 
650 4 |a laboratory X-rays 
700 1 |a Fang, Haixing  |e verfasserin  |4 aut 
700 1 |a Juul Jensen, Dorte  |e verfasserin  |4 aut 
700 1 |a Zhang, Yubin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of applied crystallography  |d 1998  |g 54(2021), Pt 1 vom: 01. Feb., Seite 99-110  |w (DE-627)NLM098121561  |x 0021-8898  |7 nnns 
773 1 8 |g volume:54  |g year:2021  |g number:Pt 1  |g day:01  |g month:02  |g pages:99-110 
856 4 0 |u http://dx.doi.org/10.1107/S1600576720014673  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 54  |j 2021  |e Pt 1  |b 01  |c 02  |h 99-110