Location and quantification of phosphorus and other elements in fully hydrated, soil-grown arbuscular mycorrhizas : a cryo-analytical scanning electron microscopy study

•  Concentrations of phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) were determined in situ in fully hydrated arbuscular mycorrhizas by cryo-analytical scanning electron microscopy. The field- and glasshouse-grown plants (subterranean and white clovers, field pea and leek) were colon...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 160(2003), 2 vom: 09. Nov., Seite 429-441
1. Verfasser: Ryan, M H (VerfasserIn)
Weitere Verfasser: McCully, M E, Huang, C X
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2003
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article arbuscular mycorrhizal fungi (AMF) calcium cryo-scanning electron microscopy host defence response, X-ray microanalysis magnesium phosphorus potassium root intercellular spaces, root cell vacuoles
Beschreibung
Zusammenfassung:•  Concentrations of phosphorus (P), potassium (K), magnesium (Mg) and calcium (Ca) were determined in situ in fully hydrated arbuscular mycorrhizas by cryo-analytical scanning electron microscopy. The field- and glasshouse-grown plants (subterranean and white clovers, field pea and leek) were colonized by indigenous mycorrhizal fungi. •  The [P] in intraradical hyphae was generally 60-170 mM, although up to 600 mM was recorded, and formed strong linear relationships with [K], up to 350 mM, and [Mg], up to 175 mM. Little Ca was detected. The turgid branches of young arbuscules contained 30-50 mM P, up to 100 mM K and little Mg. Collapsing arbuscule branches and clumped arbuscules had greatly elevated Ca (30-250 mM), but otherwise differed little from young arbuscule branches in elemental concentration. •  The [P] was low or undetectable in 86% of uncolonized cortical cell vacuoles, but was generally elevated in vacuoles surrounding an arbuscule and in the liquid surrounding hyphae in intercellular spaces. •  Our results suggest that both young arbuscules and intercellular hyphae are sites for P-transfer, that Mg2+ and K+ are probably balancing cations for P anions in hyphae, and that host cells may limit arbuscule lifespan through deposition of material rich in Ca
Beschreibung:Date Revised 09.04.2021
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1469-8137
DOI:10.1046/j.1469-8137.2003.00884.x