|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM323864023 |
003 |
DE-627 |
005 |
20231225185107.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/gcb.15588
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1079.xml
|
035 |
|
|
|a (DE-627)NLM323864023
|
035 |
|
|
|a (NLM)33831231
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Maaz, Tai M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Meta-analysis of yield and nitrous oxide outcomes for nitrogen management in agriculture
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 27.05.2021
|
500 |
|
|
|a Date Revised 10.07.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
|
520 |
|
|
|a Improved nitrogen (N) use is key to future food security and environmental sustainability. While many regions still experience N shortages, agriculture is the leading global emitter of N2 O due to losses exacerbated by N surpluses in other regions. In order to sustainably maintain or increase food production, farmers and their advisors need a comprehensive and actionable understanding of how nutrient management affects both yield and N2 O emissions, particularly in tropical and subtropical agroecosystems. We performed a meta-analysis to determine the effect of N management and other factors on N2 O emissions, plant N uptake, and yield. Our analysis demonstrates that performance indicators-partial N balance and partial factor productivity-predicted N2 O emissions as well as or better than N rate. While we observed consistent production and environmental benefits with enhanced-efficiency fertilizers, we noted potential trade-offs between yield and N2 O emissions for fertilizer placement. Furthermore, we observed confounding effects due to management dynamics that co-vary with nutrient application practices, thus challenging the interpretation of the effect of specific practices such as fertilization frequency. Therefore, rather than providing universally prescriptive management for N2 O emission reduction, our evidence supports mitigation strategies based upon tailored nutrient management approaches that keep N balances within safe limits, so as to minimize N2 O emissions while still achieving high crop yields. The limited evidence available suggests that these relationships hold for temperate, tropical, and subtropical regions, but given the potential for expansion of N use in crop production, further N2 O data collection should be prioritized in under-represented regions such as Sub-Saharan Africa
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Meta-Analysis
|
650 |
|
4 |
|a 4R
|
650 |
|
4 |
|a N2O
|
650 |
|
4 |
|a agriculture
|
650 |
|
4 |
|a balance
|
650 |
|
4 |
|a emissions
|
650 |
|
4 |
|a management
|
650 |
|
4 |
|a rice
|
650 |
|
4 |
|a subtropical
|
650 |
|
4 |
|a yield
|
650 |
|
7 |
|a Fertilizers
|2 NLM
|
650 |
|
7 |
|a Soil
|2 NLM
|
650 |
|
7 |
|a Nitrous Oxide
|2 NLM
|
650 |
|
7 |
|a K50XQU1029
|2 NLM
|
650 |
|
7 |
|a Nitrogen
|2 NLM
|
650 |
|
7 |
|a N762921K75
|2 NLM
|
700 |
1 |
|
|a Sapkota, Tek B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Eagle, Alison J
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kantar, Michael B
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bruulsema, Tom W
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Majumdar, Kaushik
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Global change biology
|d 1999
|g 27(2021), 11 vom: 08. Juni, Seite 2343-2360
|w (DE-627)NLM098239996
|x 1365-2486
|7 nnns
|
773 |
1 |
8 |
|g volume:27
|g year:2021
|g number:11
|g day:08
|g month:06
|g pages:2343-2360
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/gcb.15588
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 27
|j 2021
|e 11
|b 08
|c 06
|h 2343-2360
|