Classifying ecosystem stressor interactions : Theory highlights the data limitations of the additive null model and the difficulty in revealing ecological surprises

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 13 vom: 10. Juli, Seite 3052-3065
1. Verfasser: Burgess, Benjamin J (VerfasserIn)
Weitere Verfasser: Purves, Drew, Mace, Georgina, Murrell, David J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Meta-Analysis Lotka-Volterra environmental drivers food chain freshwater meta-analysis multiple stressors observation error theoretical ecology
LEADER 01000naa a22002652 4500
001 NLM323858090
003 DE-627
005 20231225185059.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15630  |2 doi 
028 5 2 |a pubmed24n1079.xml 
035 |a (DE-627)NLM323858090 
035 |a (NLM)33830596 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Burgess, Benjamin J  |e verfasserin  |4 aut 
245 1 0 |a Classifying ecosystem stressor interactions  |b Theory highlights the data limitations of the additive null model and the difficulty in revealing ecological surprises 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 06.08.2021 
500 |a Date Revised 06.08.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Understanding how multiple co-occurring environmental stressors combine to affect biodiversity and ecosystem services is an on-going grand challenge for ecology. Currently, progress has been made through accumulating large numbers of smaller-scale empirical studies that are then investigated by meta-analyses to detect general patterns. There is particular interest in detecting, understanding and predicting 'ecological surprises' where stressors interact in a non-additive (e.g. antagonistic or synergistic) manner, but so far few general results have emerged. However, the ability of the statistical tools to recover non-additive interactions in the face of data uncertainty is unstudied, so crucially, we do not know how well the empirical results reflect the true stressor interactions. Here, we investigate the performance of the commonly implemented additive null model. A meta-analysis of a large (545 interactions) empirical dataset for the effects of pairs of stressors on freshwater communities reveals additive interactions dominate individual studies, whereas pooling the data leads to an antagonistic summary interaction class. However, analyses of simulated data from food chain models, where the underlying interactions are known, suggest both sets of results may be due to observation error within the data. Specifically, we show that the additive null model is highly sensitive to observation error, with non-additive interactions being reliably detected at only unrealistically low levels of data uncertainty. Similarly, plausible levels of observation error lead to meta-analyses reporting antagonistic summary interaction classifications even when synergies co-dominate. Therefore, while our empirical results broadly agree with those of previous freshwater meta-analyses, we conclude these patterns may be driven by statistical sampling rather than any ecological mechanisms. Further investigation of candidate null models used to define stressor-pair interactions is essential, and once any artefacts are accounted for, the so-called 'ecological surprises' may be more frequent than was previously assumed 
650 4 |a Journal Article 
650 4 |a Meta-Analysis 
650 4 |a Lotka-Volterra 
650 4 |a environmental drivers 
650 4 |a food chain 
650 4 |a freshwater 
650 4 |a meta-analysis 
650 4 |a multiple stressors 
650 4 |a observation error 
650 4 |a theoretical ecology 
700 1 |a Purves, Drew  |e verfasserin  |4 aut 
700 1 |a Mace, Georgina  |e verfasserin  |4 aut 
700 1 |a Murrell, David J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 13 vom: 10. Juli, Seite 3052-3065  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:13  |g day:10  |g month:07  |g pages:3052-3065 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15630  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 13  |b 10  |c 07  |h 3052-3065