Enhancing ISAR Image Efficiently via Convolutional Reweighted l1 Minimization

Inverse synthetic aperture radar (ISAR) imaging for the sparse aperture data is affected by considerable artifacts, because under-sampling of data produces high-level grating and side lobes. Noting the ISAR image generally exhibits strong sparsity, it is often obtained by sparse signal recovery (SSR...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 12., Seite 4291-4304
1. Verfasser: Zhang, Shuanghui (VerfasserIn)
Weitere Verfasser: Liu, Yongxiang, Li, Xiang, Hu, Dewen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM323817955
003 DE-627
005 20231225185008.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3070442  |2 doi 
028 5 2 |a pubmed24n1079.xml 
035 |a (DE-627)NLM323817955 
035 |a (NLM)33826516 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Shuanghui  |e verfasserin  |4 aut 
245 1 0 |a Enhancing ISAR Image Efficiently via Convolutional Reweighted l1 Minimization 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 15.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Inverse synthetic aperture radar (ISAR) imaging for the sparse aperture data is affected by considerable artifacts, because under-sampling of data produces high-level grating and side lobes. Noting the ISAR image generally exhibits strong sparsity, it is often obtained by sparse signal recovery (SSR) in case of sparse aperture. The image obtained by SSR, however, is often dominated by strong isolated scatterers, resulting in difficulty to recognize the structure of target. This paper proposes a novel approach to enhance the ISAR image obtained from the sparse aperture data. Although the scatterers of target are isolated in the ISAR image, they should be associated with the neighborhood to reflect some intrinsic structural information of the target. A convolutional reweighted l1 minimization model, therefore, is proposed to model the structural sparsity of ISAR image. Specifically, the ISAR image is reconstructed by solving a sequence of reweighted l1 problems, where the weight of each pixel used for the next iteration is calculated from the convolution of its neighbor values in the current solution. The problem is solved by the alternating direction of multipliers (ADMM) and linearized approximation, respectively, to improve the computational efficiency. Experimental results based on both simulated and measured data validate that the proposed algorithm is effective to enhance the ISAR image, robust to noise, and more impressively, very efficient to implement 
650 4 |a Journal Article 
700 1 |a Liu, Yongxiang  |e verfasserin  |4 aut 
700 1 |a Li, Xiang  |e verfasserin  |4 aut 
700 1 |a Hu, Dewen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 12., Seite 4291-4304  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:12  |g pages:4291-4304 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3070442  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 12  |h 4291-4304