Hand Pose Understanding With Large-Scale Photo-Realistic Rendering Dataset

Hand pose understanding is essential to applications such as human computer interaction and augmented reality. Recently, deep learning based methods achieve great progress in this problem. However, the lack of high-quality and large-scale dataset prevents the further improvement of hand pose related...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 12., Seite 4275-4290
1. Verfasser: Deng, Xiaoming (VerfasserIn)
Weitere Verfasser: Zhang, Yinda, Shi, Jian, Zhu, Yuying, Cheng, Dachuan, Zuo, Dexin, Cui, Zhaopeng, Tan, Ping, Chang, Liang, Wang, Hongan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Hand pose understanding is essential to applications such as human computer interaction and augmented reality. Recently, deep learning based methods achieve great progress in this problem. However, the lack of high-quality and large-scale dataset prevents the further improvement of hand pose related tasks such as 2D/3D hand pose from color and depth from color. In this paper, we develop a large-scale and high-quality synthetic dataset, PBRHand. The dataset contains millions of photo-realistic rendered hand images and various ground truths including pose, semantic segmentation, and depth. Based on the dataset, we firstly investigate the effect of rendering methods and used databases on the performance of three hand pose related tasks: 2D/3D hand pose from color, depth from color and 3D hand pose from depth. This study provides insights that photo-realistic rendering dataset is worthy of synthesizing and shows that our new dataset can improve the performance of the state-of-the-art on these tasks. This synthetic data also enables us to explore multi-task learning, while it is expensive to have all the ground truth available on real data. Evaluations show that our approach can achieve state-of-the-art or competitive performance on several public datasets
Beschreibung:Date Completed 06.09.2021
Date Revised 06.09.2021
published: Print-Electronic
Citation Status MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2021.3070439