An automated and fast system to identify COVID-19 from X-ray radiograph of the chest using image processing and machine learning

© 2021 Wiley Periodicals LLC.

Détails bibliographiques
Publié dans:International journal of imaging systems and technology. - 1990. - 31(2021), 2 vom: 30. Juni, Seite 499-508
Auteur principal: Khan, Murtaza Ali (Auteur)
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:International journal of imaging systems and technology
Sujets:Journal Article COVID‐19 artificial intelligence chest X‐ray radiograph feature descriptors medical image processing
LEADER 01000caa a22002652c 4500
001 NLM32376472X
003 DE-627
005 20250301092932.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22564  |2 doi 
028 5 2 |a pubmed25n1079.xml 
035 |a (DE-627)NLM32376472X 
035 |a (NLM)33821097 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Khan, Murtaza Ali  |e verfasserin  |4 aut 
245 1 3 |a An automated and fast system to identify COVID-19 from X-ray radiograph of the chest using image processing and machine learning 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a A type of coronavirus disease called COVID-19 is spreading all over the globe. Researchers and scientists are endeavoring to find new and effective methods to diagnose and treat this disease. This article presents an automated and fast system that identifies COVID-19 from X-ray radiographs of the chest using image processing and machine learning algorithms. Initially, the system extracts the feature descriptors from the radiographs of both healthy and COVID-19 affected patients using the speeded up robust features algorithm. Then, visual vocabulary is built by reducing the number of feature descriptors via quantization of feature space using the K-means clustering algorithm. The visual vocabulary train the support vector machine (SVM) classifier. During testing, an X-ray radiograph's visual vocabulary is sent to the trained SVM classifier to detect the absence or presence of COVID-19. The study used the dataset of 340 X-ray radiographs, 170 images of each Healthy and Positive COVID-19 class. During simulations, the dataset split into training and testing parts at various ratios. After training, the system does not require any human intervention and can process thousands of images with high precision in a few minutes. The performance of the system is measured using standard parameters of accuracy and confusion matrix. We compared the performance of the proposed SVM-based classier with the deep-learning-based convolutional neural networks (CNN). The SVM yields better results than CNN and achieves a maximum accuracy of up to 94.12% 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a artificial intelligence 
650 4 |a chest X‐ray radiograph 
650 4 |a feature descriptors 
650 4 |a medical image processing 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 31(2021), 2 vom: 30. Juni, Seite 499-508  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnas 
773 1 8 |g volume:31  |g year:2021  |g number:2  |g day:30  |g month:06  |g pages:499-508 
856 4 0 |u http://dx.doi.org/10.1002/ima.22564  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2021  |e 2  |b 30  |c 06  |h 499-508