Convolutional capsule network for COVID-19 detection using radiography images

© 2021 Wiley Periodicals LLC.

Bibliographische Detailangaben
Veröffentlicht in:International journal of imaging systems and technology. - 1990. - 31(2021), 2 vom: 30. Juni, Seite 525-539
1. Verfasser: Tiwari, Shamik (VerfasserIn)
Weitere Verfasser: Jain, Anurag
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:International journal of imaging systems and technology
Schlagworte:Journal Article COVID‐19 X‐ray capsule network convolutional neural network decision support system deep learning visual geometry group
LEADER 01000naa a22002652 4500
001 NLM323764703
003 DE-627
005 20231225184900.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1002/ima.22566  |2 doi 
028 5 2 |a pubmed24n1079.xml 
035 |a (DE-627)NLM323764703 
035 |a (NLM)33821095 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tiwari, Shamik  |e verfasserin  |4 aut 
245 1 0 |a Convolutional capsule network for COVID-19 detection using radiography images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 16.07.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2021 Wiley Periodicals LLC. 
520 |a Novel corona virus COVID-19 has spread rapidly all over the world. Due to increasing COVID-19 cases, there is a dearth of testing kits. Therefore, there is a severe need for an automatic recognition system as a solution to reduce the spreading of the COVID-19 virus. This work offers a decision support system based on the X-ray image to diagnose the presence of the COVID-19 virus. A deep learning-based computer-aided decision support system will be capable to differentiate between COVID-19 and pneumonia. Recently, convolutional neural network (CNN) is designed for the diagnosis of COVID-19 patients through chest radiography (or chest X-ray, CXR) images. However, due to the usage of CNN, there are some limitations with these decision support systems. These systems suffer with the problem of view-invariance and loss of information due to down-sampling. In this paper, the capsule network (CapsNet)-based system named visual geometry group capsule network (VGG-CapsNet) for the diagnosis of COVID-19 is proposed. Due to the usage of capsule network (CapsNet), the authors have succeeded in removing the drawbacks found in the CNN-based decision support system for the detection of COVID-19. Through simulation results, it is found that VGG-CapsNet has performed better than the CNN-CapsNet model for the diagnosis of COVID-19. The proposed VGG-CapsNet-based system has shown 97% accuracy for COVID-19 versus non-COVID-19 classification, and 92% accuracy for COVID-19 versus normal versus viral pneumonia classification. Proposed VGG-CapsNet-based system available at https://github.com/shamiktiwari/COVID19_Xray can be used to detect the existence of COVID-19 virus in the human body through chest radiographic images 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a X‐ray 
650 4 |a capsule network 
650 4 |a convolutional neural network 
650 4 |a decision support system 
650 4 |a deep learning 
650 4 |a visual geometry group 
700 1 |a Jain, Anurag  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t International journal of imaging systems and technology  |d 1990  |g 31(2021), 2 vom: 30. Juni, Seite 525-539  |w (DE-627)NLM098193090  |x 0899-9457  |7 nnns 
773 1 8 |g volume:31  |g year:2021  |g number:2  |g day:30  |g month:06  |g pages:525-539 
856 4 0 |u http://dx.doi.org/10.1002/ima.22566  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2021  |e 2  |b 30  |c 06  |h 525-539