Impact of photoluminescent carbon quantum dots on photosynthesis efficiency of rice and corn crops
Copyright © 2021 Elsevier Masson SAS. All rights reserved.
Veröffentlicht in: | Plant physiology and biochemistry : PPB. - 1991. - 162(2021) vom: 01. Mai, Seite 737-751 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2021
|
Zugriff auf das übergeordnete Werk: | Plant physiology and biochemistry : PPB |
Schlagworte: | Journal Article C(3) C(4) Carbon quantum dots Empty fruit bunch Photosynthesis Carbon Dioxide 142M471B3J |
Zusammenfassung: | Copyright © 2021 Elsevier Masson SAS. All rights reserved. Photosynthesis is one of the most fundamental biochemical processes on earth such that it is vital to the existence of most lives on this planet. In fact, unravelling the potentials in enhancing photosynthetic efficiency and electron transfer process, which are thought to improve plant growth is one of the emerging approaches in tackling modern agricultural shortcomings. In light of this, zero-dimensional carbon quantum dots (CQD) have emerged and garnered much interest in recent years which can enhance photosynthesis by modulating the associated electron transfer process. In this work, CQD was extracted from empty fruit bunch (EFB) biochar using a green acid-free microwave method. The resulting CQD was characterized using HRTEM, PL, UV-Vis and XPS. Typical rice (C3) and corn (C4) crops were selected in the present study in order to compare the significant effect of CQD on the two different photosynthetic pathways of crops. CQD was first introduced into crop via foliar spraying application instead of localised placement of CQD before seedling development. The influence of CQD on the photosynthetic efficiency of rice (C3) and corn (C4) leaves was determined by measuring both carbon dioxide conversion and the stomatal conductance of the leaf. As a result, the introduction of CQD greatly enhanced the photosynthesis in CQD-exposed crops. This is the first study focusing on phylogenetically constrained differences in photosynthetic responses between C3 and C4 crops upon CQD exposure, which gives a better insight into the understanding of photosynthesis process and shows considerable promise in nanomaterial research for sustainable agriculture practices |
---|---|
Beschreibung: | Date Completed 27.04.2021 Date Revised 27.04.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1873-2690 |
DOI: | 10.1016/j.plaphy.2021.03.031 |