Deep Shearlet Residual Learning Network for Single Image Super-Resolution

Recently, the residual learning strategy has been integrated into the convolutional neural network (CNN) for single image super-resolution (SISR), where the CNN is trained to estimate the residual images. Recognizing that a residual image usually consists of high-frequency details and exhibits carto...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 04., Seite 4129-4142
1. Verfasser: Geng, Tianyu (VerfasserIn)
Weitere Verfasser: Liu, Xiao-Yang, Wang, Xiaodong, Sun, Guiling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM32353578X
003 DE-627
005 20231225184406.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3069317  |2 doi 
028 5 2 |a pubmed24n1078.xml 
035 |a (DE-627)NLM32353578X 
035 |a (NLM)33798084 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Geng, Tianyu  |e verfasserin  |4 aut 
245 1 0 |a Deep Shearlet Residual Learning Network for Single Image Super-Resolution 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 12.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, the residual learning strategy has been integrated into the convolutional neural network (CNN) for single image super-resolution (SISR), where the CNN is trained to estimate the residual images. Recognizing that a residual image usually consists of high-frequency details and exhibits cartoon-like characteristics, in this paper, we propose a deep shearlet residual learning network (DSRLN) to estimate the residual images based on the shearlet transform. The proposed network is trained in the shearlet transform-domain which provides an optimal sparse approximation of the cartoon-like image. Specifically, to address the large statistical variation among the shearlet coefficients, a dual-path training strategy and a data weighting technique are proposed. Extensive evaluations on general natural image datasets as well as remote sensing image datasets show that the proposed DSRLN scheme achieves close results in PSNR to the state-of-the-art deep learning methods, using much less network parameters 
650 4 |a Journal Article 
700 1 |a Liu, Xiao-Yang  |e verfasserin  |4 aut 
700 1 |a Wang, Xiaodong  |e verfasserin  |4 aut 
700 1 |a Sun, Guiling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 04., Seite 4129-4142  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:30  |g year:2021  |g day:04  |g pages:4129-4142 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3069317  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 04  |h 4129-4142