A Generalized Method for Binary Optimization : Convergence Analysis and Applications

Binary optimization problems (BOPs) arise naturally in many fields, such as information retrieval, computer vision, and machine learning. Most existing binary optimization methods either use continuous relaxation which can cause large quantization errors, or incorporate a highly specific algorithm t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 44(2022), 9 vom: 04. Sept., Seite 4524-4543
1. Verfasser: Xiong, Huan (VerfasserIn)
Weitere Verfasser: Yu, Mengyang, Liu, Li, Zhu, Fan, Qin, Jie, Shen, Fumin, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2022
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM323535666
003 DE-627
005 20231225184406.0
007 cr uuu---uuuuu
008 231225s2022 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3070753  |2 doi 
028 5 2 |a pubmed24n1078.xml 
035 |a (DE-627)NLM323535666 
035 |a (NLM)33798072 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiong, Huan  |e verfasserin  |4 aut 
245 1 2 |a A Generalized Method for Binary Optimization  |b Convergence Analysis and Applications 
264 1 |c 2022 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 05.08.2022 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Binary optimization problems (BOPs) arise naturally in many fields, such as information retrieval, computer vision, and machine learning. Most existing binary optimization methods either use continuous relaxation which can cause large quantization errors, or incorporate a highly specific algorithm that can only be used for particular loss functions. To overcome these difficulties, we propose a novel generalized optimization method, named Alternating Binary Matrix Optimization (ABMO), for solving BOPs. ABMO can handle BOPs with/without orthogonality or linear constraints for a large class of loss functions. ABMO involves rewriting the binary, orthogonality and linear constraints for BOPs as an intersection of two closed sets, then iteratively dividing the original problems into several small optimization problems that can be solved as closed forms. To provide a strict theoretical convergence analysis, we add a sufficiently small perturbation and translate the original problem to an approximated problem whose feasible set is continuous. We not only provide rigorous mathematical proof for the convergence to a stationary and feasible point, but also derive the convergence rate of the proposed algorithm. The promising results obtained from four binary optimization tasks validate the superiority and the generality of ABMO compared with the state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Yu, Mengyang  |e verfasserin  |4 aut 
700 1 |a Liu, Li  |e verfasserin  |4 aut 
700 1 |a Zhu, Fan  |e verfasserin  |4 aut 
700 1 |a Qin, Jie  |e verfasserin  |4 aut 
700 1 |a Shen, Fumin  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 44(2022), 9 vom: 04. Sept., Seite 4524-4543  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:44  |g year:2022  |g number:9  |g day:04  |g month:09  |g pages:4524-4543 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3070753  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 44  |j 2022  |e 9  |b 04  |c 09  |h 4524-4543