Assessing the COVID-19 Impact on Air Quality : A Machine Learning Approach

© 2020. The Authors.

Détails bibliographiques
Publié dans:Geophysical research letters. - 1984. - 48(2021), 4 vom: 28. Feb., Seite e2020GL091202
Auteur principal: Rybarczyk, Yves (Auteur)
Autres auteurs: Zalakeviciute, Rasa
Format: Article en ligne
Langue:English
Publié: 2021
Accès à la collection:Geophysical research letters
Sujets:Journal Article COVID‐19 air pollution quarantine measures urban air quality
LEADER 01000caa a22002652c 4500
001 NLM323416861
003 DE-627
005 20250301080354.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1029/2020GL091202  |2 doi 
028 5 2 |a pubmed25n1077.xml 
035 |a (DE-627)NLM323416861 
035 |a (NLM)33785973 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Rybarczyk, Yves  |e verfasserin  |4 aut 
245 1 0 |a Assessing the COVID-19 Impact on Air Quality  |b A Machine Learning Approach 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2020. The Authors. 
520 |a The worldwide research initiatives on Corona Virus disease 2019 lockdown effect on air quality agree on pollution reduction, but the most reliable method to pollution reduction quantification is still in debate. In this paper, machine learning models based on a Gradient Boosting Machine algorithm are built to assess the outbreak impact on air quality in Quito, Ecuador. First, the precision of the prediction was evaluated by cross-validation on the four years prelockdown, showing a high accuracy to estimate the real pollution levels. Then, the changes in pollution are quantified. During the full lockdown, air pollution decreased by -53 ± 2%, -45 ± 11%, -30 ± 13%, and -15 ± 9% for NO2, SO2, CO, and PM2.5, respectively. The traffic-busy districts were the most impacted areas of the city. After the transition to the partial relaxation, the concentrations have nearly returned to the levels as before the pandemic. The quantification of pollution drop is supported by an assessment of the prediction confidence 
650 4 |a Journal Article 
650 4 |a COVID‐19 
650 4 |a air pollution 
650 4 |a quarantine measures 
650 4 |a urban air quality 
700 1 |a Zalakeviciute, Rasa  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Geophysical research letters  |d 1984  |g 48(2021), 4 vom: 28. Feb., Seite e2020GL091202  |w (DE-627)NLM098182501  |x 0094-8276  |7 nnas 
773 1 8 |g volume:48  |g year:2021  |g number:4  |g day:28  |g month:02  |g pages:e2020GL091202 
856 4 0 |u http://dx.doi.org/10.1029/2020GL091202  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 48  |j 2021  |e 4  |b 28  |c 02  |h e2020GL091202