Geodesic Multi-Class SVM with Stiefel Manifold Embedding

Manifold of geodesic plays an essential role in characterizing the intrinsic data geometry. However, the existing SVM methods have largely neglected the manifold structure. As such, functional degeneration may occur due to the potential polluted training. Even worse, the entire SVM model might colla...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - PP(2021) vom: 30. März
1. Verfasser: Zhang, Rui (VerfasserIn)
Weitere Verfasser: Li, Xuelong, Zhang, Hongyuan, Jiao, Ziheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM323403565
003 DE-627
005 20240229143251.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2021.3069498  |2 doi 
028 5 2 |a pubmed24n1303.xml 
035 |a (DE-627)NLM323403565 
035 |a (NLM)33784614 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhang, Rui  |e verfasserin  |4 aut 
245 1 0 |a Geodesic Multi-Class SVM with Stiefel Manifold Embedding 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 22.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Manifold of geodesic plays an essential role in characterizing the intrinsic data geometry. However, the existing SVM methods have largely neglected the manifold structure. As such, functional degeneration may occur due to the potential polluted training. Even worse, the entire SVM model might collapse in the presence of excessive training contamination. To address these issues, this paper devises a manifold SVM method based on a novel ξ -measure geodesic, whose primary design objective is to extract and preserve the data manifold structure in the presence of training noises. To further cope with overly contaminated training data, we introduce Kullback-Leibler (KL) regularization with steerable sparsity constraint. In this way, each loss weight is adaptively obtained by obeying the prior distribution and sparse activation during model training for robust fitting. Moreover, the optimal scale for Stiefel manifold can be automatically learned to improve the model flexibility. Accordingly, extensive experiments verify and validate the superiority of the proposed method 
650 4 |a Journal Article 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
700 1 |a Zhang, Hongyuan  |e verfasserin  |4 aut 
700 1 |a Jiao, Ziheng  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g PP(2021) vom: 30. März  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:PP  |g year:2021  |g day:30  |g month:03 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2021.3069498  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d PP  |j 2021  |b 30  |c 03