|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM323388477 |
003 |
DE-627 |
005 |
20250301075643.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2021 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.202100484
|2 doi
|
028 |
5 |
2 |
|a pubmed25n1077.xml
|
035 |
|
|
|a (DE-627)NLM323388477
|
035 |
|
|
|a (NLM)33783062
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Dong, Haiyun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Superkinetic Growth of Oval Organic Semiconductor Microcrystals for Chaotic Lasing
|
264 |
|
1 |
|c 2021
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 05.05.2021
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a © 2021 Wiley-VCH GmbH.
|
520 |
|
|
|a Synthesis of novel mesoscopic semiconductor architectures continually generates new photonic knowledge and applications. However, it remains a great challenge to synthesize semiconductor microcrystals with smoothly curved surfaces owing to the crystal growth anisotropy. Here, a superkinetic crystal growth method is developed to synthesize 2D oval organic semiconductor microcrystals. The solid source dispersion induces an exceptionally large molecular supersaturation for vapor deposition, which breaks the crystal growth anisotropy. The synthesized stadium-shaped organic semiconductor microcrystals naturally constitute fully chaotic optical microresonators. They support low-threshold lasing on high-quality-factor scar modes localized near the stadium boundary and directional laser emission assisted by the chaotic modes. These results will reshape the understanding of the crystal growth theory and provide valuable guidance for crystalline photonic materials design
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a chaotic lasing
|
650 |
|
4 |
|a crystal growth
|
650 |
|
4 |
|a organic lasers
|
650 |
|
4 |
|a organic nanophotonics
|
650 |
|
4 |
|a organic semiconductors
|
700 |
1 |
|
|a Zhang, Chunhuan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Shu, Fang-Jie
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zou, Chang-Ling
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yan, Yongli
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yao, Jiannian
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Yong Sheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 33(2021), 18 vom: 26. Mai, Seite e2100484
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnas
|
773 |
1 |
8 |
|g volume:33
|g year:2021
|g number:18
|g day:26
|g month:05
|g pages:e2100484
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.202100484
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 33
|j 2021
|e 18
|b 26
|c 05
|h e2100484
|