A deep convolutional neural network to simultaneously localize and recognize waste types in images

Copyright © 2021 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 126(2021) vom: 01. Mai, Seite 247-257
1. Verfasser: Liang, Shuang (VerfasserIn)
Weitere Verfasser: Gu, Yu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Attention mechanism Convolutional neural network Multi-task learning Object detection Waste classification benchmark Waste recognition and localization
LEADER 01000caa a22002652c 4500
001 NLM323365183
003 DE-627
005 20250301075030.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.wasman.2021.03.017  |2 doi 
028 5 2 |a pubmed25n1077.xml 
035 |a (DE-627)NLM323365183 
035 |a (NLM)33780704 
035 |a (PII)S0956-053X(21)00159-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liang, Shuang  |e verfasserin  |4 aut 
245 1 2 |a A deep convolutional neural network to simultaneously localize and recognize waste types in images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 25.05.2021 
500 |a Date Revised 25.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2021 Elsevier Ltd. All rights reserved. 
520 |a Accurate waste classification is key to successful waste management. However, most current studies have focused exclusively on single-label waste classification from images, which goes against common sense. In this paper, we move beyond single-label waste classification and propose a benchmark for evaluating the multi-label waste classification and localization tasks to advance waste management via deep learning-based methods. We propose a multi-task learning architecture (MTLA) based on a convolutional neural network, which can be used to simultaneously identify and locate wastes in images. The MTLA comprises a backbone network with proposed attention modules, a novel multi-level feature pyramid network, and a group of joint learning multi-task subnets. To achieve joint optimization of waste identification and location, we designed the loss functions according to the concepts of focusing and joint. The proposed MTLA achieved performance similar to that of experts and had high scores for multiple tasks related to waste management. Its F1 score exceeded 95.50% (95.12% to 95.88%, with a 95% confidence interval) on the multi-label waste classification task, and the average precision score was over 81.50% (IoU = 0.5) on the waste localization task. To improve interpretation, heatmaps were used to visualize the salient features extracted by the MTLA. The proposed MTLA is a promising auxiliary tool that can improve the automation of waste management systems 
650 4 |a Journal Article 
650 4 |a Attention mechanism 
650 4 |a Convolutional neural network 
650 4 |a Multi-task learning 
650 4 |a Object detection 
650 4 |a Waste classification benchmark 
650 4 |a Waste recognition and localization 
700 1 |a Gu, Yu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Waste management (New York, N.Y.)  |d 1999  |g 126(2021) vom: 01. Mai, Seite 247-257  |w (DE-627)NLM098197061  |x 1879-2456  |7 nnas 
773 1 8 |g volume:126  |g year:2021  |g day:01  |g month:05  |g pages:247-257 
856 4 0 |u http://dx.doi.org/10.1016/j.wasman.2021.03.017  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 126  |j 2021  |b 01  |c 05  |h 247-257