Fast kNN Search in Weighted Hamming Space With Multiple Tables

Hashing methods have been widely used in Approximate Nearest Neighbor (ANN) search for big data due to low storage requirements and high search efficiency. These methods usually map the ANN search for big data into the k -Nearest Neighbor ( k NN) search problem in Hamming space. However, Hamming dis...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 30(2021) vom: 29., Seite 3985-3994
1. Verfasser: Gui, Jie (VerfasserIn)
Weitere Verfasser: Cao, Yuan, Qi, Heng, Li, Keqiu, Ye, Jieping, Liu, Chao, Xu, Xiaowei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM323361595
003 DE-627
005 20250301074934.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2021.3066907  |2 doi 
028 5 2 |a pubmed25n1077.xml 
035 |a (DE-627)NLM323361595 
035 |a (NLM)33780338 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gui, Jie  |e verfasserin  |4 aut 
245 1 0 |a Fast kNN Search in Weighted Hamming Space With Multiple Tables 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.04.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Hashing methods have been widely used in Approximate Nearest Neighbor (ANN) search for big data due to low storage requirements and high search efficiency. These methods usually map the ANN search for big data into the k -Nearest Neighbor ( k NN) search problem in Hamming space. However, Hamming distance calculation ignores the bit-level distinction, leading to confusing ranking. In order to further increase search accuracy, various bit-level weights have been proposed to rank hash codes in weighted Hamming space. Nevertheless, existing ranking methods in weighted Hamming space are almost based on exhaustive linear scan, which is time consuming and not suitable for large datasets. Although Multi-Index hashing that is a sub-linear search method has been proposed, it relies on Hamming distance rather than weighted Hamming distance. To address this issue, we propose an exact k NN search approach with Multiple Tables in Weighted Hamming space named WHMT, in which the distribution of bit-level weights is incorporated into the multi-index building. By WHMT, we can get the optimal candidate set for exact k NN search in weighted Hamming space without exhaustive linear scan. Experimental results show that WHMT can achieve dramatic speedup up to 69.8 times over linear scan baseline without losing accuracy in weighted Hamming space 
650 4 |a Journal Article 
700 1 |a Cao, Yuan  |e verfasserin  |4 aut 
700 1 |a Qi, Heng  |e verfasserin  |4 aut 
700 1 |a Li, Keqiu  |e verfasserin  |4 aut 
700 1 |a Ye, Jieping  |e verfasserin  |4 aut 
700 1 |a Liu, Chao  |e verfasserin  |4 aut 
700 1 |a Xu, Xiaowei  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 30(2021) vom: 29., Seite 3985-3994  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:30  |g year:2021  |g day:29  |g pages:3985-3994 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2021.3066907  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2021  |b 29  |h 3985-3994