Greenhouse gas production and lipid biomarker distribution in Yedoma and Alas thermokarst lake sediments in Eastern Siberia

© 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Global change biology. - 1999. - 27(2021), 12 vom: 28. Juni, Seite 2822-2839
1. Verfasser: Jongejans, Loeka L (VerfasserIn)
Weitere Verfasser: Liebner, Susanne, Knoblauch, Christian, Mangelsdorf, Kai, Ulrich, Mathias, Grosse, Guido, Tanski, George, Fedorov, Alexander N, Konstantinov, Pavel Ya, Windirsch, Torben, Wiedmann, Julia, Strauss, Jens
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:Global change biology
Schlagworte:Journal Article Yakutia anaerobic greenhouse gases incubation experiments lipid biomarkers organic matter degradation permafrost thaw talik Biomarkers mehr... Greenhouse Gases Lipids Methane OP0UW79H66
LEADER 01000naa a22002652 4500
001 NLM323307159
003 DE-627
005 20231225183912.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1111/gcb.15566  |2 doi 
028 5 2 |a pubmed24n1077.xml 
035 |a (DE-627)NLM323307159 
035 |a (NLM)33774862 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Jongejans, Loeka L  |e verfasserin  |4 aut 
245 1 0 |a Greenhouse gas production and lipid biomarker distribution in Yedoma and Alas thermokarst lake sediments in Eastern Siberia 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 27.05.2021 
500 |a Date Revised 27.05.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2021 The Authors. Global Change Biology published by John Wiley & Sons Ltd. 
520 |a Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1-year-long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO2 ) and methane (CH4 ) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L-1 ). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO2 -C g-1  dw, 28 ± 36 µg CH4 -C g-1  dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO2 -C g-1  dw, 19 ± 29 µg CH4 -C g-1  dw). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation 
650 4 |a Journal Article 
650 4 |a Yakutia 
650 4 |a anaerobic 
650 4 |a greenhouse gases 
650 4 |a incubation experiments 
650 4 |a lipid biomarkers 
650 4 |a organic matter degradation 
650 4 |a permafrost thaw 
650 4 |a talik 
650 7 |a Biomarkers  |2 NLM 
650 7 |a Greenhouse Gases  |2 NLM 
650 7 |a Lipids  |2 NLM 
650 7 |a Methane  |2 NLM 
650 7 |a OP0UW79H66  |2 NLM 
700 1 |a Liebner, Susanne  |e verfasserin  |4 aut 
700 1 |a Knoblauch, Christian  |e verfasserin  |4 aut 
700 1 |a Mangelsdorf, Kai  |e verfasserin  |4 aut 
700 1 |a Ulrich, Mathias  |e verfasserin  |4 aut 
700 1 |a Grosse, Guido  |e verfasserin  |4 aut 
700 1 |a Tanski, George  |e verfasserin  |4 aut 
700 1 |a Fedorov, Alexander N  |e verfasserin  |4 aut 
700 1 |a Konstantinov, Pavel Ya  |e verfasserin  |4 aut 
700 1 |a Windirsch, Torben  |e verfasserin  |4 aut 
700 1 |a Wiedmann, Julia  |e verfasserin  |4 aut 
700 1 |a Strauss, Jens  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Global change biology  |d 1999  |g 27(2021), 12 vom: 28. Juni, Seite 2822-2839  |w (DE-627)NLM098239996  |x 1365-2486  |7 nnns 
773 1 8 |g volume:27  |g year:2021  |g number:12  |g day:28  |g month:06  |g pages:2822-2839 
856 4 0 |u http://dx.doi.org/10.1111/gcb.15566  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2021  |e 12  |b 28  |c 06  |h 2822-2839