Minerva : a light-weight, narrative image browser for multiplexed tissue images

Advances in highly multiplexed tissue imaging are transforming our understanding of human biology by enabling detection and localization of 10-100 proteins at subcellular resolution (Bodenmiller, 2016). Efforts are now underway to create public atlases of multiplexed images of normal and diseased ti...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of open source software. - 2017. - 5(2020), 54 vom: 04.
1. Verfasser: Hoffer, John (VerfasserIn)
Weitere Verfasser: Rashid, Rumana, Muhlich, Jeremy L, Chen, Yu-An, Russell, Douglas Peter William, Ruokonen, Juha, Krueger, Robert, Pfister, Hanspeter, Santagata, Sandro, Sorger, Peter K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Journal of open source software
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM323241298
003 DE-627
005 20240331233103.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.21105/joss.02579  |2 doi 
028 5 2 |a pubmed24n1358.xml 
035 |a (DE-627)NLM323241298 
035 |a (NLM)33768192 
035 |a (PII)2579 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hoffer, John  |e verfasserin  |4 aut 
245 1 0 |a Minerva  |b a light-weight, narrative image browser for multiplexed tissue images 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 31.03.2024 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Advances in highly multiplexed tissue imaging are transforming our understanding of human biology by enabling detection and localization of 10-100 proteins at subcellular resolution (Bodenmiller, 2016). Efforts are now underway to create public atlases of multiplexed images of normal and diseased tissues (Rozenblatt-Rosen et al., 2020). Both research and clinical applications of tissue imaging benefit from recording data from complete specimens so that data on cell state and composition can be studied in the context of overall tissue architecture. As a practical matter, specimen size is limited by the dimensions of microscopy slides (2.5 × 7.5 cm or ~2-8 cm2 of tissue depending on shape). With current microscopy technology, specimens of this size can be imaged at sub-micron resolution across ~60 spectral channels and ~106 cells, resulting in image files of terabyte size. However, the rich detail and multiscale properties of these images pose a substantial computational challenge (Rashid et al., 2020). See Rashid et al. (2020) for an comparison of existing visualization tools targeting these multiplexed tissue images 
650 4 |a Journal Article 
700 1 |a Rashid, Rumana  |e verfasserin  |4 aut 
700 1 |a Muhlich, Jeremy L  |e verfasserin  |4 aut 
700 1 |a Chen, Yu-An  |e verfasserin  |4 aut 
700 1 |a Russell, Douglas Peter William  |e verfasserin  |4 aut 
700 1 |a Ruokonen, Juha  |e verfasserin  |4 aut 
700 1 |a Krueger, Robert  |e verfasserin  |4 aut 
700 1 |a Pfister, Hanspeter  |e verfasserin  |4 aut 
700 1 |a Santagata, Sandro  |e verfasserin  |4 aut 
700 1 |a Sorger, Peter K  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of open source software  |d 2017  |g 5(2020), 54 vom: 04.  |w (DE-627)NLM275088057  |x 2475-9066  |7 nnns 
773 1 8 |g volume:5  |g year:2020  |g number:54  |g day:04 
856 4 0 |u http://dx.doi.org/10.21105/joss.02579  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_21 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_61 
912 |a GBV_ILN_62 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_92 
912 |a GBV_ILN_100 
912 |a GBV_ILN_110 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_244 
912 |a GBV_ILN_285 
912 |a GBV_ILN_288 
912 |a GBV_ILN_350 
912 |a GBV_ILN_379 
912 |a GBV_ILN_2001 
912 |a GBV_ILN_2002 
912 |a GBV_ILN_2003 
912 |a GBV_ILN_2004 
912 |a GBV_ILN_2005 
912 |a GBV_ILN_2006 
912 |a GBV_ILN_2007 
912 |a GBV_ILN_2008 
912 |a GBV_ILN_2009 
912 |a GBV_ILN_2010 
912 |a GBV_ILN_2011 
912 |a GBV_ILN_2016 
912 |a GBV_ILN_2018 
912 |a GBV_ILN_2020 
912 |a GBV_ILN_2043 
912 |a GBV_ILN_2400 
912 |a GBV_ILN_2415 
912 |a GBV_ILN_2487 
912 |a GBV_ILN_2505 
951 |a AR 
952 |d 5  |j 2020  |e 54  |b 04